Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T03:15:07.235Z Has data issue: false hasContentIssue false

Dipole-Dipole Interaction Model for Oriented Aggregation of BaTiO3 Nanocrystals

Published online by Cambridge University Press:  13 March 2014

Kyuichi Yasui
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST) 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560, Japan
Kazumi Kato
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST) 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560, Japan
Get access

Abstract

In order to study the oriented aggregation of BaTiO3nanocrystals in the ultrasound-assisted synthesis in an aqueous solution [F.Dang et al., Jpn.J.Appl.Phys. 48, 09KC02 (2009)], the electric dipole-dipole interaction model has been studied by numerical simulations. The results of the numerical simulations are consistent with the experimental ones if the electric dipole moment of a primary particle (a nanocrystal) of 5 nm in diameter is about 10 D =3.3 x 10-29 (C m). It suggests that a 5-10 nm BaTiO3 nanocrystal synthesized in an aqueous solution with ultrasound has spontaneous polarization.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dang, F., Kato, K., Imai, H., Wada, S., Haneda, H., and Kuwabara, M., Jpn.J.Appl.Phys. 48, 09KC02 (2009).Google Scholar
Coelfen, H. and Antonietti, M., Mesocrystals and Nonclassical Crystallization (John Wiley & Sons, Chichester, U.K., 2008).10.1002/9780470994603CrossRefGoogle Scholar
Yasui, K., Tuziuti, T., and Kato, K., Ultrason.Sonochem. 18, 1211 (2011).10.1016/j.ultsonch.2011.03.006CrossRefGoogle Scholar
Yasui, K. and Kato, K., J.Phys.Chem.C 116, 319 (2012).10.1021/jp208848jCrossRefGoogle Scholar
Yasui, K. and Kato, K., “Numerical Simulations of Nucleation and Aggregation of BaTiO3 Nanocrystals under Ultrasound,” Cavitation: A Novel Energy-Efficient Technique for the Generation of Nanomaterials, eds. Sivakumar, M. and Ashokkumar, M. (Pan Stanford, Singapore, 2014 (in press)), chapter 12.Google Scholar
Yasui, K. and Kato, K., J.Phys.Chem.C 117, 19632 (2013).Google Scholar
Polking, M.J., Han, M.G., Yourdkhani, A., Petkov, V., Kisielowshi, C.F., Volkov, V.V., Zhu, Y., Caruntu, G., Alivisatos, A.P., and Ramesh, R., Nature Materials 11, 700 (2012).10.1038/nmat3371CrossRefGoogle Scholar
Akdogan, E.K., Leonard, M.R., and Safari, A., “Size Effects in Ferroelectric Ceramics,” Handbook of Low and High Dielectric Constant Materials and Their Applications: Phenomena, Properties, and Applications, ed. Nalwa, H.S. (Academic Press, San Diego, Calif., 1999), vol. 2, pp. 61112.10.1016/B978-012513905-2/50016-9CrossRefGoogle Scholar
Hoshina, T., Kakemoto, H., Tsurumi, T., Wada, S., and Yashima, M., J.Appl.Phys. 99, 054311 (2006).10.1063/1.2179971CrossRefGoogle Scholar