Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-01T10:36:13.810Z Has data issue: false hasContentIssue false

Dimensionally-Controlled Hydrothermal Tm3+-doped Oxidic Nanocrystals and Their Photoluminescence Properties

Published online by Cambridge University Press:  17 April 2019

Rocío Calderón-Villajos
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, c/Sor Juana Inés de la Cruz, 3. E-28049 Cantoblanco, Madrid, Spain ccascales@icmm.csic.es; cezaldo@icmm.csic.es
Carlos Zaldo
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, c/Sor Juana Inés de la Cruz, 3. E-28049 Cantoblanco, Madrid, Spain ccascales@icmm.csic.es; cezaldo@icmm.csic.es
Concepción Cascales
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, c/Sor Juana Inés de la Cruz, 3. E-28049 Cantoblanco, Madrid, Spain ccascales@icmm.csic.es; cezaldo@icmm.csic.es
Get access

Abstract

Controlled reaction conditions in simple, template-free hydrothermal processes yield Tm-Lu2O3 and Tm-GdVO4 nanocrystals with well-defined specific morphologies and sizes. In both oxide families, nanocrystals prepared at pH 7 reaction media exhibit photoluminescence in ∼1.95 μm similar to bulk single crystals. For the lowest Tm3+ concentration (0.2 % mol) in GdVO4 measured 3H4 and 3F4 fluorescence lifetimes τ are very near to τrad.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Giesen, A., Hügel, H., Voss, A., Witting, K., Brauch, U. and Opower, H., Appl. Phys. B 58, 36, 1994.Google Scholar
2. Esser, M.J.D., Preussler, D., Bernhardi, E.H., Bollig, C., Posewang, M., Appl. Phys. B, 97, 351, 2009.Google Scholar
3. Lisiecki, R., Solarz, P., Dominiak-Dzik, G. et al., Phys. Rev. B 74, 035103, 2009.Google Scholar
4. Esteban-Betegón, F., Zaldo, C., Cascales, C., Chem. Mater. DOI 10.1021/cm9032622.Google Scholar
5. Fornasiero, L., “Nd3+- und Tm3+- dotierte Sesquioxides,” Ph.D. Dissertation. Universität Hamburg, Hamburg, 1999.Google Scholar