Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-24T08:29:06.320Z Has data issue: false hasContentIssue false

Dilute Magnetic Semiconductor Superlattices Containing Hg1-xMnxTe

Published online by Cambridge University Press:  26 February 2011

K. A. Harris
Affiliation:
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202
S. Hwang
Affiliation:
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202
R. P. Burns
Affiliation:
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202
J. W. Cook jr
Affiliation:
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202
J. F. Schetzina
Affiliation:
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202
Get access

Abstract

Superlattices containing alternating layers of Hg1-xMnx Te and HgTe have been successfully grown by molecular beam epitaxy. These structures are the first superlattices containing layers of a mercury-based dilute magnetic semiconductor to be grown by any thin film technique. The optical and electrical properties of these novel magnetic multilayers are presented and discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Furdyna, J.K., J. Vac. Sci. Technol. 21, 220 (1982).Google Scholar
2. Furdyna, J.K., J. Appl. Phys. 53, 7637 (1982).Google Scholar
3. Bastard, G., Rigaux, C., Guldner, Y., Mycielski, A., Furdyna, J.K., and Mullin, D.P., Phys. Rev. B 24, 1961 (1981).Google Scholar
4. Dobrowolska, M. and Dobrowolska, W., J. Phys. C 14, 5689 (1981).Google Scholar
5. Bastard, G., Rigaux, C., Guldner, Y., Mycielski, J., and Mycielski, A., J. Phys. (Paris) 39, 87 (1978).Google Scholar
6. Bastard, G., Rigaux, C., and Mycielski, A., Phys. Stat. Solidi B: 79, 585 (1977).Google Scholar
7. Mycielski, A. and Mycielski, J., J. Phys. Soc. Jpn., 49, 807 (1980).Google Scholar
8. Bicknell, R.N., Yanka, R.W., Giles-Taylor, N.C., Buckland, E.L., and Schetzina, J.F., Appl. Phys. Lett. 45, 92 (1984).Google Scholar
9. Kolodziejski, L.A., Gunshor, R.L., Bonsett, T.C., Venkatasubramanian, R., Datta, S., Bylsma, R.B., Becker, W.M., and Otsuka, N., Appl. Phys. Lett. 47, 169 (1985).CrossRefGoogle Scholar
10 Bicknell, R.N., Giles-Taylor, N.C., Anderson, N.G., Laidig, W.D., and Schetzina, J.F., Appl. Phys. Lett. 46, 238 (1985).Google Scholar
11 Bicknell, R.N., Giles-Taylor, N.C., Blanks, D.K., Anderson, N.G., Laidig, V.D., and Schetzina, J.F., Appl. Phys. Lett. 46, 112 (1985).Google Scholar
12 Bylsma, R.B., Becker, W.M., Bonsett, T.C., Kolodziejski, L.A., Gunshor, R.L., Yamanishi, M., and Datta, S., Appl. Phys. Lett. 47, 1039 (1985).Google Scholar
13 Isaacs, E.D., Heiman, D., Zayhowski, J.J., Bicknell, R.N., and Schetzina, J.F., Appl. Phys. Lett. 48, 275 (1986).Google Scholar
14 Zhang, X.C., Chang, S.K., Nurmikko, A.V., Kolodziejski, L.A., Gunshor, R.L., and Datta, S., Phys. Rev. B 31, 4056 (1985).Google Scholar
15 Warnock, J., Petrou, A., Bicknell, R.N., Giles-Taylor, N.C., Blanks, D.K., and Schetzina, J.F., Phys. Rev. B 32, 8116 (1986).Google Scholar
16 Kolodziejski, L.A., Bonsett, T.C., Gunshor, R.L., Datta, S., Bylsma, R.B., Becker, W.M., and Otsuka, N., Appl. Phys. Lett. 45, 440 (1984).CrossRefGoogle Scholar
17 Bicknell, R.N., Giles-Taylor, N.C., Blanks, D.K., Yanka, R.W., Buckland, E.L., and Schetzina, J.F., J. Vac. Sci. Technol. B 3, 709 (1985).Google Scholar
18 Harris, K.A., Hwang, S., Blanks, D.K., Cook, J.W. Jr, and Schetzina, J.F., J. Vac. Sci. Technol. A 4, 2061 (1986).Google Scholar
19 Harris, K.A., Hwang, S., Blanks, D.K., Cook, J.W. Jr, and Schetzina, J.F., J. Vac. Sci. Technol. B 4, 581 (1986).Google Scholar