Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-06T19:08:41.052Z Has data issue: false hasContentIssue false

Diffusion, Solubility and Segregation of Implanted Cu, Ag and Au in Amorphous Si

Published online by Cambridge University Press:  28 February 2011

D. C. Jacobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
R. G. Elliman
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. M. Gibson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
G. L. Olson
Affiliation:
Hughes Research Laboratories, Malibu, CA 90265
J. M. Poate
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. S. Williams
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

The diffusion of Cu, Ag and Au has been measured in implanted, amorphous Si, over the range 150–600° C. The diffusion coefficients are characterized by Arrhenius relationships with activation energies for Cu, Ag and Au of 1.25, 1.6 and 1.4 eV respectively. The solubility of Au in amorphous Si was measured to be 6 orders of magnitude greater than crystalline Si at a temperature of 515°C. The Cu, Ag and Au are segregated ahead of the moving amorphous-crystalline interface. The presence of Au can increase the velocity of the interface.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Elliman, R. G., Gibson, J. M., Jacobson, D. C., Poate, J. M., and Williams, J. S., Appl. Phys. Lett., 46, 478 (1985).Google Scholar
[2] Poate, J. M., Jacobson, D. C., Williams, J. S., Elliman, R. G. and Boerma, D. O., Nuclear Instruments & Method (in press).Google Scholar
[3] Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M., and Jacobson, D. C., J. Appl. Phys., 57, 1795 (1985).CrossRefGoogle Scholar
[4] Trumbore, F. A., Bell System Tech. Journal, 39, 210 (1960).Google Scholar
[5] Jacobson, D. C. and Feygenson, A. (to be published).Google Scholar
[6] Thompson, M. O., Galvin, G. J., Mayer, J. W., Peercy, P. S., Poate, J. M., Jacobson, D. C., Cullis, A. G., and Chew, N. G., Phys. Rev. Lett., 52, 2360 (1984).Google Scholar
[7] Struthers, J. D., J. Appl. Phys., 28, 1560 (1956), and J. Appl. Phys., 28, 516 (1957), and S. Kalbitzer, M. Reinelt and W. Stolz in Proceedings of the 4th EC Photovoltaic Solar Energy Conference, Stresa, Stresa, May 1982, edited by W. H. Bloss and G. Grassi [Reidel, Dortredit, Holland, 1059], (1982).Google Scholar
[8] Boltaks, B. I. and Sozinov, I. I., Zhur Tekh Fiz, 28, 3 (1958).Google Scholar
[9] Hall, R. N. and Racette, J. H., J. Appl. Phys., 35, 379 (1964).Google Scholar
[10] Boltaks, B. I. and Shin-yin, Hsüeh, Soviet Physics - Solid State, 2, 2383 (1961).Google Scholar
[11] Wilcox, W. R. and LaChapelle, T. J., J. Appl. Phys., 35, 240 (1964).Google Scholar
[12] Stolwijk, N. A., Hölzl, J., Frank, W., Weber, E. R., and Mehrer, H., Appl. Phys. A., 39, 37 (1964).Google Scholar