Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-11T06:23:01.905Z Has data issue: false hasContentIssue false

Diffusion of Hydrogen in Amorphous Silicon in the Low Concentration Regime

Published online by Cambridge University Press:  01 January 1993

J.A. Roth
Affiliation:
Hughes Research Laboratories, Malibu, California 90265
G.L. Olson
Affiliation:
Hughes Research Laboratories, Malibu, California 90265
D.C. Jacobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
J.M. Poate
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

We report the first measurements of hydrogen diffusion kinetics in a-Si in the regime of low H concentration (<2×l019 cm−3). The results differ substantially from the diffusion behavior typically observed in hydrogenated a-Si:H at H concentrations >1020 cm−3. The activation energy and pre-exponential factor for low-concentration H diffusion are found to be 2.70 ± 0.02 eV and 2.2 × 104 cm2s−1, respectively, and are shown to be independent of both annealing time and H concentration. It is difficult to reconcile the combination of high activation energy and large pre-exponential factor with a simple deep-trap-limited diffusion model. Consequently, an alternative mechanism for H diffusion involving the migration of dangling bonds coupled with a H bond-switching step is proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Waddell, C. N., Spitzer, W. G., Fredrickson, J. E., Hubler, G. K., and Kennedy, T. A., J. Appl. Phys. 55, 4361 (1984).Google Scholar
[2] Beyer, W. and Wagner, H., J. Non-Cryst. Solids 59–60, 161 (1983).Google Scholar
[3] Jackson, W. B. and Tsai, C. C., Phys. Rev. B 45, 6564 (1992).Google Scholar
[4] Zellama, K., Germain, P., Squelard, S., Bourdon, B., Fontenille, J., and Danielou, R., Phys. Rev. B 23, 6648 (1981).Google Scholar
[5] Allan, D. C., Joannopoulos, J. D., and Pollard, William B., Phys. Rev. B 25, 1065 (1982).Google Scholar
[6] Roth, J. A., Olson, G. L., Jacobson, D. C., and Poate, J. M., Appl. Phys. Lett. 57, 1340 (1990).Google Scholar
[7] Poate, J. M., Coffa, S., Jacobson, D. C., Polman, A., Roth, J. A., Olson, G. L., Roorda, S., Sinke, W., Custer, J. S., Thompson, M. O., Spaepen, F., and Donovan, E., Nucl. Inst. and Meth. B 55, 533 (1991).Google Scholar
[8] Roth, J. A., Olson, G. L., Jacobson, D. C., Poate, J. M. and Kirschbaum, C., Mater. Res. Soc. Symp. Proc. 205, 45 (1992).Google Scholar
[9] Overhof, H. and Thomas, P., Electronic Transport in Hydrogenated Amorphous Semiconductors , Edited by Hohler, G. (Springer-Verlag, Berlin, 1989) p. 122.Google Scholar
[10] Shewmon, P. G., Diffusion in Solids (McGraw-Hill, New York, 1963) p. 61.Google Scholar
[11] Spaepen, F., Acta Metall. 26, 1167 (1978).Google Scholar
[12] Spaepen, F. and Turnbull, D., in Laser-Solid Interactions and Laser Processing, Ferris, S. D., Leamy, H. J., and Poate, J. M., Eds. (Am. Inst. Phys., New York, 1979), vol. 50, pp. 7383.Google Scholar
[13] Lu, G. Q., Nygren, E., and Aziz, M. J., J. Appl. Phys. 70, 5323 (1991).Google Scholar