Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-16T04:33:51.541Z Has data issue: false hasContentIssue false

Diffusion and Self-Gettering of Nickel in Float Zone Silicon Wafers

Published online by Cambridge University Press:  15 February 2011

N. Gay
Affiliation:
Laboratoire de Photoélectricité - EA 882 D.S.O. “Défauts dans les Semi-conducteurs et leurs Oxydes” -, University of Marseilles, - 13397 Marseilles Cedex 20 - France
S. Martinuzzi
Affiliation:
Laboratoire de Photoélectricité - EA 882 D.S.O. “Défauts dans les Semi-conducteurs et leurs Oxydes” -, University of Marseilles, - 13397 Marseilles Cedex 20 - France
Get access

Abstract

External gettering techniques trap removed impurities in regions of a semiconductor which contain defects or in which the solubility is enhanced like in phosphorus diffused layers or in Al-Si alloy. If a fast diffuser like nickel is used in place of Al to obtain an alloy or a compound close to the surface, contamination and decontamination can occur resulting of the indiffusion and removal of nickel atoms. P type FZ samples were partly covered by nickel (nickel òn part 1 and not on part 2) and then annealed at 950°C for 1h.

As expected, after nickel indiffusion the diffusion length of minority carriers decreases but the values are always higher in part 1 than in part 2. Scanning infrared microscopy detects precipitates in part 2 and not in part 1. The results are explained assuming that the nickel-silicon compound formed at the surface serves as a diffusion source as well as an external self-gettering region.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gilles, D., Schröter, W. and Bergholz, W., Phys. Rev. B 41, 5770 (1990).Google Scholar
2. Joshi, S.M., Gösele, U.M. and Tan, T.Y., Mat. Res. Soc. Symp. Proc, 378, p. 279 (1995).Google Scholar
3. Weber, E.R., McHugo, S.A. and Hielsmair, H., Solid State Phenomena 47/48, 165 (1995).Google Scholar
4. Handbook of semiconductor silicon technology edited by O'Mara, .C., Herring, R.B. and Hunt, L.P. (1990) p. 775.Google Scholar
5. Mangelinck, D., Gas, P., Grob, A., Pichaud, B. and Thomas, O., J. Appl. Phys. 79 (8), 4078 (1996).Google Scholar
6. Seibt, M. and Schröter, W., Phil. Mag. A, 59, 337 (1989).Google Scholar
7. Graff, K. in “Metal Impurities in Silicon-Device Fabrication”. Springer series in Materials Science 24, ed. by Queisser, H.J. (1995), p. 79.Google Scholar
8. Martinuzzi, S. and Stemmer, M., Mat. Science and Eng. B24, 152 (1994).Google Scholar
9. Stemmer, M., Véve, C., Gay, N. and Martinuzzi, S., Mat. Science and Technology 11, 703 (1995).Google Scholar
10. Myers, S.M. and Follstaedt, D., J. Appl. Phys. 79 (3), 1337 (1996).Google Scholar
11. Raineri, V., Fallica, P.G., Percola, G., Battaglia, A., Barbagallo, M. and Campisano, S.U., J. Appl. Phys. 78 (6), 3727 (1995).Google Scholar
12. Kittler, M., Lärz, J., Seifert, W., Seibt, M. and Schröter, W., Appl. Phys. Lett. 58, 911 (1991).Google Scholar