Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T05:29:05.728Z Has data issue: false hasContentIssue false

Diffusion and Distribution of Photoacid Generators in thin Polymer Films

Published online by Cambridge University Press:  10 February 2011

Qinghuang Lin
Affiliation:
IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, qhlin@us.ibm.com
Marie Angelopoulos
Affiliation:
IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, qhlin@us.ibm.com
Katherina Babich
Affiliation:
IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, qhlin@us.ibm.com
David Medeiros
Affiliation:
IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, qhlin@us.ibm.com
Narayan Sundararajan
Affiliation:
Department of Materials Science and Engineering, Cornell University, 327 Bard Hall, Ithaca, NY 14853
Gina Weibel
Affiliation:
Department of Materials Science and Engineering, Cornell University, 327 Bard Hall, Ithaca, NY 14853
Christopher Ober
Affiliation:
Department of Materials Science and Engineering, Cornell University, 327 Bard Hall, Ithaca, NY 14853
Get access

Abstract

Distribution and diffusion of two fluorinated ionic photoacid generators (PAGs) in thin polymer films have been investigated by depth profiling of the intrinsic label elements of both the PAGs and a silicon containing carrier polymer with Rutherford Backscattering Spectrometry (RBS) and dynamic Secondary Ion Mass Spectroscopy (SIMS). Distribution and diffusion of the PAGs in a bilayer film stack, which consists of a thin silicon containing polymer film on top of a thick thermally cross-linked Novolak film on a silicon substrate, have been studied as a function of the Novolak cross-linking temperature. Deposition of the PAG containing polymer films on top of the cross-linked Novolak films by spin coating results in an interphase with enriched PAG. Subsequent annealing of the film stack causes expansion of the interphase and diffusion of the PAG into the underlying Novolak film when Novolak is cross-linked at lower temperatures. On the other hand, there is a uniform PAG distribution and no detectable diffusion of the PAG into Novolak when it is cross-linked at high temperatures. The variations in the PAG distribution and diffusion are attributed to the changes in the chemical and physical properties of Novolak during cross-linking.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wallraff, G. M. and Hinsberg, W., Chem. Rev. 99, 1801– (1999).Google Scholar
2.Sundararajan, N., Ogino, K., Valiyaveettil, S.et al., Proc. SPIE 3678, 78– (1999).Google Scholar
3.McKean, D. R., Allen, R. D., Kasai, P. H.et al., Proc. SPIE 1672, 94– (1992).Google Scholar
4.Ito, H., Breyta, G., Hofer, D.et al., J. Photopolym. Sci. Technol. 7, 433– (1994).Google Scholar
5.Itani, T., Yoshino, H., Fujimoto, M.etal., J. Vac. Sci. Technolo. B 16 (6), 3026– (1995).Google Scholar
6.Stewart, M. D., Postnikov, S. V., Tran, H-V.et al., Polym. Mater. Sci. Eng. 81, 58 (1999).Google Scholar
7.Postnikov, S. V., Stewart, M. D., Tran, H. V.et al., J. Vac. Sci. Technol. B to appear (1999).Google Scholar
8.Schlegel, L., Ueno, T., Hayashi, et al., J. Vac. Sci. Technol. 9, 278 (1991).Google Scholar
9.Cronin, M. F., Adams, M., Fedynyshyn, T.et al., Proc. SPIE 2195, 214 (1994).Google Scholar
10.Itani, T., Yoshino, H., Hashimoto, S.et al., J. Vac. Sci. Technol. B 14 (6), 4226–8 (1996).Google Scholar
11.Mueller, K. E., Koros, W. J., Mack, C. A.et al., Proc. SPIE 4039, 706– (1997).Google Scholar
12.Zhang, P. L., Eckert, A. A., Willson, C. G.et al., Proc. SPIE 3049, 898– (1997).Google Scholar
13.Wallraff, G. M., Hinsberg, W. D., Houle, F. A.et al., Proc. SPIE 3678, 138– (1999).Google Scholar
14.Lin, Q., Petrillo, K.E., Babich, K.et al., Proc. SPIE 3678, 241– (1999).Google Scholar
15.Sooriyakumaran, R., Wallraff, G. M., Opitz, J.et al., Proc. SPIE 3333, 219 (1998).Google Scholar
16.Sundararajan, N., Keimel, C. F., Bhargava, N.et al., J. Photopolym. Sci. Technol. 12 (3), 457– (1999).Google Scholar
17.Uhrich, K. E., Reichmanis, E., and Baiocchi, F. A., Chem. Mater. 6, 295– (1994).Google Scholar
18.Ehlich, D. and Sillescu, H., Macromolecules 23, 1600– (1990).Google Scholar