Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-15T20:47:06.764Z Has data issue: false hasContentIssue false

Diffraction from Zeolites Containing Planar Faults

Published online by Cambridge University Press:  28 February 2011

M. M. J. Treacy
Affiliation:
Exxon Research and Engineering Company, Route 22 East, Annandale, NJ 08801
J. M. Newsam
Affiliation:
Exxon Research and Engineering Company, Route 22 East, Annandale, NJ 08801
M. W. Deem
Affiliation:
Exxon Research and Engineering Company, Route 22 East, Annandale, NJ 08801
Get access

Abstract

Methods suitable for measuring the extent of planar faulting in the framework structures of zeolites are considered. A simple method is outlined for simulating diffracted intensities from crystals containing coherent planar defects. The algorithm employed efficiently exploits the self-similar properties of extended faulting patterns. The simplicity of this recursion method makes it suitable for complex crystal structures such as those of zeolites, and its utility is illustrated by a study of faulting in zeolite beta. Powder diffraction pattern simulations, which are in excellent agreement with observed data, indicate a fault probability in the chiral zeolite beta stacking sequence of α ≈0.56.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Meier, W. M. & Olson, D. H., Atlas of Zeolite Structure Types second revised edition (Butterworths, Surrey) 1987.Google Scholar
2. Treacy, M. M. J., Newsam, J. M., Vaughan, D. E. W., Beyerlein, R. A., Rice, S. B. & DeGruyter, C. B., Mater. Res. Soc. Symp. Proc. 111, pp.177190, 1988.Google Scholar
3. Newsam, J. M., Treacy, M. M. J., Vaughan, D. E. W., Strohmaier, K. G. & Mortier, W. J., J. Chem. Soc. Chem. Comm. 1988, submitted.Google Scholar
4. Treacy, M. M. J. & Newsam, J. M., Nature, 332, 249251, 1988.Google Scholar
5. Newsam, J. M., Treacy, M. M. J., DeGruyter, C. B. & Koetsier, W. T., Proc. Roy. Soc. (London), in press 1988.Google Scholar
6. Higgins, J. B., LaPierre, R. B., Schlenker, J. L., Rohrman, A. C., Wood, J. D., Kerr, G. T. & Rohrbaugh, W. J., Zeolites, 8, 446452, 1988.Google Scholar
7. Martens, J. A. & Jacobs, P. A., Zeolites, 6, 334348, 1986.Google Scholar
8. Fyfe, C. A., Strobl, H., Kokotailo, G. T., Pasztor, C. T., Barlow, G. E. & Bradley, S., Zeolites, 8, 132136, 1988.Google Scholar
9. Melchior, M. T., Vaughan, D. E. W., Jarman, R. H. & Jacobson, A. J., presented at “Rocky Mtn. Conf. Applied Spectroscopy”, Denver CO, Aug. 8, 1984.Google Scholar
10. Benslama, R., Fraissard, J., Albizane, A., Fajula, F. & Figueras, F., Zeolites, 8 196198, 1988.Google Scholar
11. Thomas, J. M. & Millward, G. R., J. Chem Soc Chem Comm, 13801383, 1982.Google Scholar
12. Welberry, T. R., Rep. Prog. Phys., 48, 15431593, 1985.Google Scholar
13. Hendricks, S. & Teller, E., J. Chem. Phys., 10, 147167, 1942.Google Scholar
14. Warren, B. E., X ray Diffraction (Addison-Wesley, New York) 1969.Google Scholar
15. Berliner, R. & Werner, S. A., Phys. Rev., B34 35863603, 1986.Google Scholar
16. Treacy, M. M. J., Newsam, J. M., & Deem, M. W., in preparation, 1988.Google Scholar
17. Cowley, J. M., Diffraction Physics, (North-Holland, New York) 388400, 1981.Google Scholar
18. Wiles, D. B. & Young, R. A., J. Appl. Cryst., 14, 149151, 1981.Google Scholar