Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-01T19:19:41.231Z Has data issue: false hasContentIssue false

Different Mechanisms Leading to Superhard Coatings: Stable Nanocomposites and High Biaxial Compressive Stress

Published online by Cambridge University Press:  17 March 2011

S. Veprek
Affiliation:
Institute for Chemistry of Inorganic Materials, Technical University Munich, Lichtenbergstr. 4, D-85747 Garching, Germany, E-mail: veprek@ch.tum.de
P. Karvankova
Affiliation:
Institute for Chemistry of Inorganic Materials, Technical University Munich, Lichtenbergstr. 4, D-85747 Garching, Germany, E-mail: veprek@ch.tum.de
J. Prochazka
Affiliation:
Institute for Chemistry of Inorganic Materials, Technical University Munich, Lichtenbergstr. 4, D-85747 Garching, Germany, E-mail: veprek@ch.tum.de
H. Männling
Affiliation:
Institute for Chemistry of Inorganic Materials, Technical University Munich, Lichtenbergstr. 4, D-85747 Garching, Germany, E-mail: veprek@ch.tum.de
Get access

Abstract

A strong enhancement of the hardness above 40 GPa in thin coatings can be achieved either by the formation of a suitable nanostructure (heterostructures and nanocomposites) or by a large biaxial compressive stress of ≥ 5 GPa. Superhard and thermally fairly stable nanocomposites, such as nc-TiN/a-Si3N4, nc-TiN/a-Si3N4/a-TiSi2, nc-(Ti1-xAlx)N/a-Si3N4 retain their hardness after annealing to 900-1100°C whereas coatings with a high stress, such as HfB2, CrxN/Ni, ZrN/Ni and others soften to ≤ 20 GPa already after their annealing to 400-500°C due to the relaxation of that stress.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Koehler, J. S., Phys. Rev. B 2 (1970) 547 Google Scholar
[2] Barnet, S. A., in: Physics of Thin Films, Vol. 17, Mechanic and Dieletric Properties, eds. Francombe, M. H. and Vossen, J. L., Academic Press, Boston 1993, p. 2.Google Scholar
[3] Barnet, S. A., Madan, A., Phys. World 11 (1998) 45.Google Scholar
[4] Veprek, S., J. Vac. Sci. Technol. A 17 (1999) 2401.Google Scholar
[5] Veprek, S., Reiprich, S., Shizhi, Li, Appl. Phys. Lett. 66 (1995) 2640;Google Scholar
[6] Veprek, S., Reiprich, S., Thin Solid Films 268 (1996) 64.Google Scholar
[7] Argon, A. S., Veprek, S., Proc. 22nd Riso Int. Symp. on Materials Science: Science of Metastable and Nanocrystalline Alloys, eds. Dinesen, A. R., Eldrup, M., Jensen, D. Juul et al., Riso Nat. Laboratory, Roskilde, Denmark 2001 p. 183.Google Scholar
[8] Veprek, S., Argon, A. S., Surf. Coatings Technol. in press.Google Scholar
[9] Niederhofer, A., Bolom, T., Nesladek, P., Moto, K., Eggs, C., Patil, D., Veprek, S., Surf. Coatings Technol. in press.Google Scholar
[10] Männling, H., Patil, D., Moto, K., Jilek, M., Veprek, S., Surf. Coatings Technol. in press.Google Scholar
[11] Holubar, P., Jilek, M., Sima, M., Surf. Coatings Technol. 133–134 (2000) 145.Google Scholar
[12] Musil, J., Surf. Coat. Technol. 125 (2000) 322.Google Scholar
[13] Herr, W., Broszeit, E., Surf. Coat. Technol. 97 (1997) 335.Google Scholar
[14] Musil, J., Kadlec, S., Vyskocil, J., Valvoda, V., Thin Solid Films 167 (1988) 107.Google Scholar
[15] Veprek, S., Haussmann, M., Reiprich, S., J. Vac. Sci. Technol. A 14 (1996) 46.Google Scholar
[16] Veprek, S., Haussmann, M., Reiprich, S., Shizhi, Li, Dian, J., Surf. Coatings Technol. 86–87 (1996) 394.Google Scholar
[17] Veprek, S., Nesladek, P., Niederhofer, A., Glatz, F., Jilek, M., Sima, M., Surf. Coat. Technol. 108–109 (1998) 138 Google Scholar
[18] Karvankova, P., Veprek, S., unpublished 2001, work in progress.Google Scholar
[19] Christiansen, S., Albrecht, M., Strunk, H., Veprek, S., J. Vac. Sci. Technol. A 14 (1996) 46.Google Scholar
[20] Siegel, R. W., Fougere, G. E., NanoStrucured Mater. 6 (1995) 205.Google Scholar
[21] Schiotz, J., Tolla, E. D. Di, Jacobsen, K. W., Nature 391, (1998) 561.Google Scholar
[22] Conrad, H., J. Narayan, Scripta Mater. 42 (2000) 1025.Google Scholar
[23] Swadener, J. G., Taljat, B., Pharr, G. M., J. Mater. Res. 16 (2001) 2091.Google Scholar
[24] Tsui, T.Y., Oliver, W.C., Pharr, G.M., J. Mater. Res. 11 (1996) 752 & 760.Google Scholar
[25] Tabor, G., The Hardness of Metals (Clarendon Press, Oxford, 1951).Google Scholar
[26] Hoffman, D. W., Gaertner, M. R., J. Vac. Sci. Technol. 17 (1980) 425.Google Scholar
[27] Veprek, S., Sarott, F.-A., Igbal, Z., Phys. Rev. B 36 (1987) 3344.Google Scholar
[28] Valvoda, V., Kuzel, R., Cerny, R., J. Musil, Thin Solid Films 156 (1988) 53.Google Scholar
[29] Karvankova, P., Männling, H., Veprek, S., Surf. Coatings Technol. in press.Google Scholar
[30] Musil, J., private communication 2001.Google Scholar
[31] Niederhofer, A., Nesladek, P., Männling, H., Moto, K., Veprek, S., Jilek, M., Surf. Coatings Technol. 120–121 (1999) 173.Google Scholar
[32] Musil, J., Zeman, P., Hruby, H., Mayhofer, P., Surf. Coat. Technol. 120–121, (1999) 179.Google Scholar
[33] Mitterer, C., Mayhofer, P., Beschlisser, M. et al., Surf. Coat. Technol. 120–121 (1999) 405.Google Scholar
[34] Hammer, P., Steiner, A., Villa, R. et al., Surf. Coat. Technol. 68–69 (1994) 194.Google Scholar
[35] Kelly, A. and Macmillan, N. H., Strong Solids, Clarendon Press Oxford 1986.Google Scholar