Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-23T05:37:24.520Z Has data issue: false hasContentIssue false

Dielectric Relaxation in Small Confining Geometries

Published online by Cambridge University Press:  15 February 2011

M. Arndt
Affiliation:
Universität Leipzig, Linnéstr. 5 04103 Leipzig, Germany
F. Kremer
Affiliation:
Universität Leipzig, Linnéstr. 5 04103 Leipzig, Germany
Get access

Abstract

Broadband dielectric spectroscopy (10−2 Hz – 109 Hz) is employed to study the molecular dynamics of the glassforming liquid salol (phenyl salicylate) being contained in (dielectric inactive) porous glasses with pore sizes of about 2.5 nm, 5.0 nm and 7.5 nm. Besides the bulk relaxation (I) of salol, two further dielectric loss processes are observed due to the geometrical constraint of the inner surfaces of the pores: the “interfacial relaxation” (II) and a Maxwell-Wagner polarization (III). The “interfacial relaxation” is assigned to the restricted dynamics of the molecules close to the inner surface of the pores. It shows a strong pore-size dependence for pores < 5 nm both in relaxation rate and dielectric strength.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Klafter, J. and Drake, J. M., Molecular Dynamics in Restricted Geometries, John Wiley, New York (1989)Google Scholar
[2] Richter, D., Dianoux, A. J., Petry, W. and Teixeira, J., Dynamics in Disordered Materials, Springer Proceedings in Physics, Vol.38, Springer, Berlin (1989)Google Scholar
[3] Zhang, J., Li, Y. and Jonas, J., J. Phys. Chem. 95, 3478 (1992)Google Scholar
[4] Zhang, J., Liu, G. and Jonas, J., J. Chem. Phys. 96, 3478 (1992)Google Scholar
[5] Ngai, K. L. and Wright, G. B., Relaxation in Complex Systems, North-Holland, Amsterdam (1991)Google Scholar
[6] Jackson, C. L. and McKenna, G. B., J. Chem. Phys. 93, 9002 (1990)Google Scholar
[7] Urbakh, M. and Klafter, J., J. Phys. Chem. 97, 3344 (1993); M. Urbakh and J. Klafter in Disorder Effects on Relaxational Processes, Eds.: Richert, R. and Blumen, A., Springer, Berlin (1994)Google Scholar
[8] Fischer, E. W., Donth, E. and Steffen, W.. Phys. Rev. Lett. 68, 2344 (1992)Google Scholar
[9] Hu, H.-W. and Granick, S., Science 258, 1339 (1992)Google Scholar
[10] Steiner, U., Klein, J. and Fetters, L. J., PRL 72, 1498 (1994)Google Scholar
[11] Stampf, S., Kimmich, R. and Niess, J., J. Appl. Phys. 75, 529 (1994)Google Scholar
[12] Jackson, C. L. and McKenna, G. B., J. Non-Cryst. Solids 131–133, 221 (1992)Google Scholar
[13] Pissis, P. et al., J. Phys. 6, L325 (1994)Google Scholar
[14] Schller, J. et al., Phys. Rev. Lett. 73, 2224 (1994)Google Scholar
[15] Kremer, F. et al., Prog. Polym. Sci. 80, 129 (1989)Google Scholar
[16] Havriliak, S. and Negami, S., J. Polym. Sci. Part C 14, 99 (1966)Google Scholar
[17] Havriliak, S. and Negami, S., S. Polymer 8, 161 (1967)Google Scholar
[18] Hofmann, A., Kremer, F., Fischer, E. W. and Schnhals, A., pp. 309 in Disorder Effects on Relaxational Processes, Eds.: Richert, R. and Blumen, A., Springer, Berlin (1994)Google Scholar
[19] Kirst, K. U., Kremer, F. and Litvinov, V. M., Macromolecules 26, 975 (1993)Google Scholar
[20] Wagner, K. W., Arch. Elektrotech. 2, 378 (1914)Google Scholar