Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-20T13:35:19.115Z Has data issue: false hasContentIssue false

Dielectric Properties of Ba1−xSxTiO3 Films Grown on LaAlO3 Substrates

Published online by Cambridge University Press:  10 February 2011

Y. Gim
Affiliation:
Superconductivity Technology Center, MS-K763, Los Alamos National Laboratory, NM 87545
T. Hudson
Affiliation:
Superconductivity Technology Center, MS-K763, Los Alamos National Laboratory, NM 87545
Y. Fan
Affiliation:
Superconductivity Technology Center, MS-K763, Los Alamos National Laboratory, NM 87545
A. T. Findikoglu
Affiliation:
Superconductivity Technology Center, MS-K763, Los Alamos National Laboratory, NM 87545
C. Kwon
Affiliation:
Department of Physics and Astronomy, California State University-Long Beach, CA 90840
B. J. Gibbons
Affiliation:
Superconductivity Technology Center, MS-K763, Los Alamos National Laboratory, NM 87545
Q. X. Jia
Affiliation:
Superconductivity Technology Center, MS-K763, Los Alamos National Laboratory, NM 87545
Get access

Abstract

We report the crystal structures and dielectric properties of barium strontium titanate, Ba1−xSrxTiO3 (BST), films deposited on LaAlO3 substrates using pulsed laser deposition, where x = 0.1 to 0.9 at an interval of 0.1. We have found that when x < 0.4 the c-axis is parallel to the plane of the substrate but normal as x approaches 1. Temperature-dependent capacitance measurements at 1 MHz show that the capacitance has a peak and that the peak temperature decreases with increasing x. We have found that the peak temperatures of the films are about 70 °C higher than those of bulk BSTs when x < 0.4. From room-temperature capacitance (C) vs applied voltage (V) measurements, we have found that the C-V curves of the BST films exhibit hysteresis except for x = 0.9 and that the peak voltage at which the capacitance becomes maximum decreases with increasing x. At room temperature, the Ba0.6Sr0.4 TiO3 film exhibits the largest capacitance tunability (≈ 37%) with an applied electric field of 40 kV/cm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Findikoglu, A. T., Jia, Q. X., Reagor, D. W., and Wu, X. D., Microwave and Optical Technology Letters 9, 306(1995).10.1002/mop.4650090603Google Scholar
2 Chakalov, R. A., Ivanov, Z. G., Boikov, Yu. A., Larsson, P., Carlsson, E., Gevorgian, S., and Claeson, T., Physica C 308, 279 (1998).10.1016/S0921-4534(98)00572-3Google Scholar
3 Chen, C. L., Feng, H. H., Zhang, Z., Brazdeikis, A., Huang, Z. J., Chu, W. K., Chu, C. W., Miranda, F. A., Keuls, F. W. Van, Romanofsky, R. R., and Liou, Y., Appl. Phys. Lett. 75, 412 (1999).10.1063/1.124392Google Scholar
4 Smolenskii, G. A. and Rozgachev, K. I., Zh. Tekh. Fiz. 24, 1751 (1954).Google Scholar
5 McQuarrie, M., J. of the American Ceramic Society 38, 444 (1955).10.1111/j.1151-2916.1955.tb14571.xGoogle Scholar
6 Ryen, L., Olsson, E., Madsen, L. D., Wang, X., Edvardsson, C. N. L., Jacobsen, S. N., Helmersson, U., Rudner, S., Wernlund, L. -D., J. of Appl. Phys. 83, 4884, (1998).10.1063/1.367288Google Scholar
7 Jona, Franco and Shirane, G., Ferroelectric Crystals, Ch. IV, Dover Publications, Inc., New York (1993).Google Scholar
8 Forsbbergh, P. W. Jr., Phys. Rev. 93, 686 (1954).10.1103/PhysRev.93.686Google Scholar
9 Merz, W. J., Phys. Rev. 77, 52 (1950).10.1103/PhysRev.78.52Google Scholar