Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-10T22:31:08.899Z Has data issue: false hasContentIssue false

Dielectric Gradient Force Actuation with on-chip electrode and Free-Space Optical Measurement of SiNx Nanomechanical Resonator

Published online by Cambridge University Press:  30 March 2012

Sungwan Cho
Affiliation:
Department of Physics and Astronomy, Seoul National Universtiy, Seoul, 151-747, Republic of Korea. Korea Research Institute of Standards and Science, Daejeon, 305-340, Republic of Korea.
Myung Rae Cho
Affiliation:
Department of Physics and Astronomy, Seoul National Universtiy, Seoul, 151-747, Republic of Korea.
Seung-Bo Shim
Affiliation:
Korea Research Institute of Standards and Science, Daejeon, 305-340, Republic of Korea.
Yun Daniel Park
Affiliation:
Department of Physics and Astronomy, Seoul National Universtiy, Seoul, 151-747, Republic of Korea.
Get access

Abstract

Nanomechanical resonators made from silicon nitride with residual stress is actuated using dielectric field gradient force. Doubly clamped nanomechanical resonators are made from SiNx-SiO2-Si tri-layer substrate and DC electric field induces a temporary dipole moment while a small AC electric field drives beam resonator by dielectric force. Realized nanomechanical resonators show resonant motion of high resonant frequency (up to ~31 Mhz) and mechanical quality factor up to over 48,000 at room temperature and moderate vacuum condition. From the FEA (Finite Element Analysis) of resonant motion, doubly clamped resonator shows torsional motion and in-plane motion which can be assigned to additional multiple modes in resonant response measurement

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ekinci, K. L. and Roukes, M. L., Rev. Sci. Instrum. 76, 061101 (2005).Google Scholar
2. Rugar, D. and Grütter, P., Phys. Rev. Lett. 67, 699 (1991).Google Scholar
3. Knobel, R. G. and Cleland, A. N., Nature 424, 291 (2003).Google Scholar
4. Masmanidis, S. C., Karabalin, R. B., De Vlaminck, I., Borghs, G., Freeman, M. R., and Roukes, M. L., Science 317, 780 (2007).Google Scholar
5. Bargatin, I., Kozinsky, I., and Roukes, M. L., Appl. Phys. Lett. 90, 093116 (2007).Google Scholar
6. Ilic, B., Krylov, S., Aubin, K., Reichenbach, R., and Craighead, H. G., Appl. Phys. Lett. 86, 193114 (2005).Google Scholar
7. Thompson, J. D., Zwickl, B. M., Jayich, A. M., Marquardt, F., Girvin, S. M., and Harris, J. G. E., Nature 452, 900 (2008).Google Scholar
8. Unterreithmeier, Q. P., Weig, E. M., and Kotthaus, J. P., Nature 458, 1001 (2009).Google Scholar
9. Verbridge, S. S., Shapiro, D. F., Craighead, H. G., and Parpia, J. M., Nano Lett. 7, 1728 (2007).Google Scholar
10. Mohanty, P., Harrington, D. A., Ekinci, K. L., Yang, Y. T., Murphy, M. J., and Roukes, M. L., Phys. Rev. B 66, 085416 (2002).Google Scholar
11. Unterreithmeier, Q. P., Faust, T., and Kotthaus, J. P., Phys. Rev. Lett. 105, 027205 (2010).Google Scholar