Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-23T09:30:48.672Z Has data issue: false hasContentIssue false

Dielectric Function and Band Gaps of Si1−xCx AND Si0.924−xGe0.076Cx (0≤x≤0.014) Semiconductor Alloys Grown on Si

Published online by Cambridge University Press:  15 February 2011

Hosun Lee
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185-0601
J.A. Floro
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185-0601
J. Strane
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185-0601
S. R. Lee
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185-0601
E. D. Jones
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185-0601
T. Mayer
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185-0601
S. T. Picraux
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185-0601
Get access

Abstract

We have characterized the optical properties of heteroepitexial Si1−xCx and Si0.924−xGe0.076Cx (0≤x≤0.014) alloys grown on Si substrates by solid phase epitaxy using spectroscopic ellipsometry. The measured dielectric function confirms that the samples are of good crystalline quality. We determined the E1 and E2 band gaps by lineshape-fitting the features in the second derivative spectra of the dielectric functions. Also, we discuss the shift of the band gaps with C concentration arising from strain and chemical alloying.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kissinger, W., Weidner, M., Osten, H. J., and Eichler, M., Appl. Phys. Lett. 65, 3356, (1994)Google Scholar
2. Boucaud, P., Francis, C., Larré, A., Lourtioz, J. -M., Bouchier, D., Bodnar, S., and Regolini, J. L., Appl. Phys. Lett, 66, 70, (1995)Google Scholar
3. Boucaud, P., Francis, C., Julien, F.H., Lourtioz, J. -M., and Bouchier, D., Bodnar, S., Lambert, B., and Regolini, J.L., Appl. Phys. Lett. 64, 875, (1994)Google Scholar
4. Strane, J. W., Stein, H. J., Lee, S. R., Doyle, B. L., Picraux, S. T., and Mayer, J. W., Appl. Phys. Lett. 63, 2786, (1993)Google Scholar
5. Strane, J. W., Stein, H. J., Lee, S. R., Picraux, S. T., Watanabe, J. K., and Mayer, J. W., J. Appl. Phys. 76, 3656, (1994) and references thereinGoogle Scholar
6. Lee, Hosun, Kurtz, S. R., Floro, J.A., Strane, J., Seager, C. H., Lee, S. R., Jones, E. D., Nelson, J. F., Mayer, T., and Picraux, S. T., unpublished.Google Scholar
7. Cardona, M., Modulation Spectroscopy, Solid State Physics, edited by Seitz, F., Turnbull, D., and Ehrenreich, H. (Academic Press, New York, 1969), p. 65 Google Scholar
8. Aspnes, D.E., Handbook on Semiconductors (North-Holland, Amsterdam, 1980), Vol. 2, p 109 Google Scholar
9. Zollner, S., Herzinger, C.M., Woolam, J.A., Iyer, S.S., Powel, A.P., Eberl, K., Presented at 1995 Spring Materials Research Society Proceedings, San Francisco, CA Google Scholar
10. Pickering, C., Carline, R.T., Robbins, D.J., Leong, W.Y., Barnett, S.J., Pitt, A.D., and Cullis, A.G., J. Appl. Phys. 73, 239, (1993)Google Scholar
11. Lee, Hosun, Welser, J.J., and Hoyt, J.L., unpublishedGoogle Scholar
12. Iyer, S.S., Eberl, K., Goorsky, M.S., Legoues, F.K., Tsang, J. C., Appl. Phys. Lett. 60, 356, (1992)Google Scholar
13. Auld, B. A., Acoustic Fields and Waves in Solids, vol.1,, John Wiley & Sons, New York Google Scholar
14. Pollak, F. H., Surf. Sci. 37, 863, (1973)Google Scholar
15. Landolt-Börnstein, 1982, Madelung, O., Schultz, M., and Weiss, H., eds. (Springer, Berlin, New York, 1982), Vol. 17a Google Scholar
16. Aspnes, D. E. and Cardona, M., Solid State Commun. 27, 397, (1978); A. Daunois and D.E. Aspnes, Phys. Rev. B 18, 1824, (1978)Google Scholar