Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-29T01:17:04.642Z Has data issue: false hasContentIssue false

Dielectric Characterization of Thin Films Consisting of Tin Doped Indium Oxide Nanoparticles

Published online by Cambridge University Press:  21 February 2011

A. Hultåker
Affiliation:
Department of Materials Science, Uppsala University, PO Box 534, SE-751 21 Uppsala, weden, nnette.Hultaker@Angstrom.uu.se
G. A. Niklasson
Affiliation:
Department of Materials Science, Uppsala University, PO Box 534, SE-751 21 Uppsala, weden
Get access

Abstract

In recent years there has been a growing interest in cheap and easy production techniques for transparent conducting thin films. One way of making these uses a nanoparticle dispersion. We prepared thin films of tin doped indium oxide by spin-coating of a solution of nanoparticles. The sintering behavior of these ceramic particles was studied by dielectric spectroscopy and by grazing incidence X-ray diffraction. The grain growth was found to start at 1000°C and to be prominent at 1250°C. However, the electrical conductivity reached a maximum below these temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kim, J. S., Granström, M., Friend, R. H., Johansson, N., Salaneck, W. R., Daik, R., Feast, W. J. and Cacialli, F., J. Appl. Phys. 84, pp. 68596870 (1998).Google Scholar
2. Hamberg, I. and Granqvist, C. G., J. Appl. Phys. 60, pp. R123–R159 (1986).Google Scholar
3. Granqvist, C. G., Appl. Phys. A 57, pp. 1924 (1993).Google Scholar
4. Granqvist, C. G., Azens, A., Hjelm, A., Kullman, L., Niklasson, G. A., Rönnow, D., Mattsson, M. Stromme, Veszlei, M. and Vaivars, G., Solar Energy 63, pp. 199216 (1998).Google Scholar
5. Barlow, F., Naby, M. A., Joshi, A. and Elshabini-Riad, A., Solar Energy Mater. Solar Cells 33, pp. 6371 (1994).Google Scholar
6. Nakayama, K., Send, S. and Uchida, F., Proc. 9th Int. Microelectronics Conf., Tokyo, Japan, 1996, pp. 5457.Google Scholar
7. Coleman, J. P., Lynch, A. T. and Madhukar, P., Proc. Third Symp. Electrochromic Materials, San Antonio, Texas, US, 1996, pp. 325337.Google Scholar
8. Jonscher, A. K., Dielectric Relaxation in Solids, Chelsea Dielectrics Press, London, 1983, pp. 112 and pp. 7578, 81.Google Scholar
9. Toney, M. F., in Encyclopedia of Materials Characterization, edited by Brundle, C. R., Evans, C. A. Jr, and Wilson, S., Butterworth-Heinemann and Manning Publications Co., Stoneham and Greenwich, 1992, pp. 207208.Google Scholar
10. Schaumburg, G., (private communication).Google Scholar
11.ZView for Windows 1.2.Google Scholar
12. Mayo, M. J., Chen, D.-J. and Hague, D. C., in Nanomaterials; Synthesis, Properties and Applications, edited by Edelstein, and Cammarata, , Institute of Physics Publishing, London, 1996, pp. 165197.Google Scholar
13. Kuhn, W. E., in Ultrafine Particles, edited by Kuhn, W. E., Wiley, New York, 1963, pp. 41103.Google Scholar
14.Powder diffraction file 06-0416.Google Scholar
15. Behr, G., Werner, J., Oswald, S., Krabbes, G., Dordor, P., Elefant, D. and Pitschke, W., Solid State Ionics 101–103, pp. 11831187 (1997).Google Scholar
16. Shigesato, Y., Takaki, S. and Haranou, T., Appl. Surf. Sci. 48/49, pp. 269275 (1991).Google Scholar
17. Bommel, M. J. v., Groen, W. A., Hal, H. A. M. v., Keur, W. C. and Bernards, T. N. M., J. Mater. Sci. 34, pp. 48034809 (1999).Google Scholar