Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-12T02:07:27.112Z Has data issue: false hasContentIssue false

Diamond Film CVD Synthesis on Titanium: Experimental Evidence of the Intermediate Phases at the Film/Substrate Interface

Published online by Cambridge University Press:  10 February 2011

M. Rossi
Affiliation:
Dipartimento di Energetica, Università “La Sapienza”, via A. Scarpa 14 - 00161 Roma - Italy
M. L. Terranova
Affiliation:
Dipartimento di Scienze e Tecnologie Chimiche, Università “Tor Vergata”, via della Ricerca Scientifica - 00133 Roma - Italy
V. Sessa
Affiliation:
Dipartimento di Scienze e Tecnologie Chimiche, Università “Tor Vergata”, via della Ricerca Scientifica - 00133 Roma - Italy
G. Vitali
Affiliation:
Dipartimento di Energetica, Università “La Sapienza”, via A. Scarpa 14 - 00161 Roma - Italy
Get access

Abstract

The present findings concern the CVD deposition of diamond films on Ti substrates and the presence of a stratification of other various phases (Titanium Carbide, Titanium Hydride and Graphite) through the thickness of the CVD coatings.

The reflection high energy electron diffraction (RHEED) technique is mainly used to gain insight into the structure of the various phases generated at the diamond/substrate interface.

The experimental results seem to indicate that the structure of the transition layers present at the substrate/film interface play a fundamental role for the control of the heterogeneous nucleation process of the diamond.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Perry, S. S., IIIAger, J. W., Somorjai, G. A., Mclelland, R. J. and Drory, M. D., J. Appl. Phys. 74, 7542 (1993).Google Scholar
2. Park, S. S. and Lee, J. Y., J. Appl. Phys. 69, 2618 (1991).Google Scholar
3. Terranova, M. L., Rossi, M., Sessa, V. and Vitali, G., Thin Solid Films 241, 340 (1994).Google Scholar
4. Rossi, M., Vitali, G., Terranova, M. L. and Sessa, V., Appl. Phys. Lett. 63, 2765 (1993).Google Scholar
5. Feng, Z., Komvopolous, K., Brown, I. G. and Bogy, D. B., J.Mater. Res. 9, 2148 (1994).Google Scholar
6. Stoner, R., Ma, G, H., Wolter, S. D. and Glass, J. T., Phys. Rev. B45,11067 (1992).Google Scholar
7. Terranova, M. L., Rossi, M., Sessa, V. and Vitali, G., Sol. State Comm. 91, 55 (1994).Google Scholar
8. Terranova, M. L., Sessa, V., Vitali, G., Rossi, M., Cappuccio, G. and Veroli, C., J. de Phys.IV C5, 879 (1995).Google Scholar
9. Terranova, M. L., Polini, R., Sessa, V., Braglia, M. and Cocito, G., Diamond Rel. Mater. 1, 969 (1992).Google Scholar
10. Cappuccio, G., Sessa, V., Terranova, M.L. and Veroli, C., Mater. Sci. Forum 166-169, 325 (1994).Google Scholar
11. ICCD database.Google Scholar
12. Terranova, M. L., Rossi, M., Sessa, V. and Vitali, G., accepted by Phys. Status Sol. (1995).Google Scholar
13. Rossi, M., Vitali, G., Karpuzov, D., Budinov, H. and Kalitzova, M., J. Mat. Sc. 26, 3327(1991).Google Scholar
14. Deryagin, B. V. and Fedoseev, D. V., Growth of diamond and graphite from the vapour phase (Izd.Nauka, Moscow 1977).Google Scholar
15. Vitali, G., Rossi, M., Terranova, M.L. and Sessa, V., J. Appl. Phys. 77, 4307 (1995).Google Scholar