Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-14T22:10:57.628Z Has data issue: false hasContentIssue false

Diamond Coatings on Surface-Modified Carbide Tools Using KrF Pulsed Laser

Published online by Cambridge University Press:  10 February 2011

Dong-Gu Lee
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, dlee@mail.mse.ufl.edu
Rajiv K. Singh
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, dlee@mail.mse.ufl.edu
Get access

Abstract

The surface of a cemented carbide was modified using a KrF pulsed laser process to achieve a microrough structure, leading to stronger adherence of diamond films to cemented carbide substrates. The surface morphology and roughness were investigated with laser conditions. After the surface modification with the laser and the etching of the modified surface, heat treatment was performed prior to deposition of diamond film in order to observe changes in surface morphology and adhesion. Diamond films were grown by chemical vapor deposition process. The results indicated that the heat treatment of the modified cemented carbide improved the adhesion of diamond films by the recrystallization of tungsten carbides into the fine and long grains. As laser energy for the modification of a cemented carbide increased, the surface roughness increased and tungsten carbide (WC) was transformed to WC1−x(X =0–0.3) and then to W2C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cerio, F. M., Herb, J. A., and Cummings, R., Surf Coat. Technol. 62, 674 (1993).Google Scholar
2.Kanda, K., Takehana, S., Yoshida, S., Shikamura, F. and Ishigane, K., in 2 “d Int. Conf on the Applicaiton ofDiamond Films andRelat. Mater. edited by Yoshikawa, M., Murakawa, M., Tzeng, Y., Yarbrough, W. A., MYU, Tokyo, (1993) 565.Google Scholar
3.Kuo, C. T., Yen, T. Y., and Huang, T. H., J. Mater. Res., 5 (1990) 2515.Google Scholar
4.Murakawa, M., Takeuchi, S., Miyazawa, H., and Hirose, Y., Surf Coat. Technol. 36 (1988) 303.Google Scholar
5.Söderberg, S., Gerendas, A., and Sjöstrand, M., Vacuum 41 (1990) 1317.Google Scholar
6.Lux, B., Haubner, R., and Renard, P., Diamond Relat. Mater. 1, 1035 (1992)Google Scholar
7.NeslAdek, M., Vandierendonck, K., Quaeyhaegens, C., Kerkhofs, M., and Stals, L. M., Thin Solid Films 270, 184 (1995).Google Scholar
8.Grannen, K. J., Xiong, F., and Chang, R. P. H., Surf Coat. Technol. 57, 155 (1993).Google Scholar
9.Park, B. S., Baik, Y.-J., Lee, K. -R., Eun, K. Y., and Kim, D. H., Diamond Relat. Mater. 2, 910 (1993).Google Scholar
10.Joffreau, P. O., Haubner, R., and Lux, B., Int. J. Refract. & Hard Met. 7(4) (1988) 186.Google Scholar
11.Deurler, F., van den Berg, H., Tabersky, R., Freundlieb, A., Pies, M., and Buck, V., Diamond Relat. Mater. 5 (1996) 1478.Google Scholar
12.Isozaki, T., Saito, Y., Masuda, A., Fukumoto, K., Chosa, M., Ito, T., Oles, E. J., Inspector, A., and Bauer, C. E., Diamond Relat. Mater. 2 (1993) 1156.Google Scholar
13.Endler, I., Leonhardt, A., Scheibe, H. -J., and Born, R., Diamond Relat. Mater. 5 (1996) 299.Google Scholar
14.Singh, R. K., Gilbert, D. R., Fitz-Gerald, J., Harkness, S., and Lee, D. G., Science 272 (1996) 396.Google Scholar
15.Lee, D. G., Fitz-Gerald, J. M., and Singh, R. K., Surf Coat. Technol. (1997) (in press).Google Scholar
16.Jindal, P. C., Quinto, D. T., and Wolfe, G. J., Thin Solid Films 154, (1987) 361.Google Scholar
17.Singh, R. K., Fitz-Gerald, J. M., Nucl. Instr. and Meth. in Phys. Res. B 121 (1997) 363.Google Scholar