Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-26T16:26:02.416Z Has data issue: false hasContentIssue false

Diamagnetic Susceptibility of Micron Thick a-Si:H Films Measured via Proton NMR: A Probe of Structural Disorder

Published online by Cambridge University Press:  17 March 2011

J. Baugh
Affiliation:
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255
D. X. Han
Affiliation:
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255
A. Kleinhammes
Affiliation:
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255
Q. Wang
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd. Golden, CO 80401
Y. Wu
Affiliation:
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255
Get access

Abstract

Magnetic susceptibility is predicted to be sensitive to structural disorder in the group IV elemental semiconductors. A proton nuclear magnetic resonance (NMR) technique is shown to precisely measure bulk magnetic susceptibilities (χ) of hot-wire (HW) CVD a-Si:H films as- deposited on quartz substrates. Differences in χ correlate with growth rate, but not with hydrogen content or deposition temperature. Qualitative agreement is found between smaller diamagnetic susceptibility (less average disorder) and desirable electronic properties measured by photo- and dark conductivity on the same samples. Comparing films with similar hydrogen distribution and content (as evidenced by the NMR spectra) allows the unambiguous identification of the importance of overall Si network structural disorder in the metastability of a-Si:H.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Street, R. A., Hydrogenated Amorphous Silicon, Cambridge University Press, 1991.Google Scholar
2. Tsu, D. V., Chao, B. S., Ovshinsky, S. R., Guha, S., Yang, J., Appl. Phys. Lett. 71, 1317 (1997).Google Scholar
3. Williamson, D. L., Mat. Res. Soc. Symp. Proc. 557 (1999), in press.Google Scholar
4. Baugh, J., Han, D. X., Kleinhammes, A., Liu, C. L. and Wu, Y., J. Non-Cryst. Sol. 266, 185 (2000).Google Scholar
5. Yang, L. and Chen, L., Appl. Phys. Lett. 63, 400 (1993).Google Scholar
6. Wu, Y., Stephen, J.T., Han, D. X., Rutland, J. M., Crandall, R. S. and Mahan, A. H., Phys. Rev. Lett. 77, 2049 (1996).Google Scholar
7. Candea, R., Hudgens, S., Kastner, M., Knights, J., Phil. Mag. B 37, 119 (1978).Google Scholar
8. Sahu, T. and Das, N., Phys. Rev. B 45, 13336 (1992).Google Scholar
9. Mahan, A. H., Carapella, J., Nelson, B. P., Crandall, R. S., and Balberg, I., J. Appl. Phys. 69, 6728 (1991).Google Scholar
10. Levy, D. H. and Gleason, K. K., J. Vac. Sci. Technol. A 11, No. 1, 195 (1993).Google Scholar
11. Vanacek, M., Remes, Z., Fric, J., Crandall, R. S. and Mahan, A. H., Proc. of the 12th European Photovoltaic Solar Energy Conference, 354 (1994).Google Scholar
12. Han, D. X., Yue, G.Z., Lin, J., Habuchi, H., Iwaniczko, E., Wang, Q., Mat. Res. Soc. Symp. Proc. (2000), to be published.Google Scholar