Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-21T17:48:54.606Z Has data issue: false hasContentIssue false

Device Quality Silicon Carbon Thin Films

Published online by Cambridge University Press:  17 March 2011

Christian Gemmer
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, Germanyemail:christian.gemmer@ipe.uni-stuttgart.de
Markus B. Schubert
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Get access

Abstract

We attain good quality hydrogenated silicon carbon films grown by plasma-enhanced chemical vapor deposition. Similar to hydrogenated silicon, we observe a characteristic edge of crystallinity at medium hydrogen dilution ratios of the feedstock gases. In the transition regime between amorphous and nanocrystalline phase, our thin films exhibit a remarkable ratio of photocarrier mobility-lifetime product to dark conductivity of 105... 106 cm3A-1 and minimum light-induced degradation. The static index of refraction increases and the resonance energy decreases for films below the onset of crystallinity which points towards a higher compactness of the protocrystalline material. Hence, alloying of hydrogenated silicon with small amounts of carbon leads to the formation of SiC:H layers that feature an optical bandgap of 2.0 eV and simultaneously maintain the superior optoelectronic properties of protocrystalline silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rech, B., and Wagner, H., Appl. Phys. A 69, 155 (1999).Google Scholar
2. Keppner, H., Meier, J., Torres, P., Fischer, D., and Shah, A., Appl. Phys. A 69, 169 (1999).Google Scholar
3. Yang, J., Banerjee, A., and Guha, S., Appl. Phys. Lett. 70, 2975 (1997).Google Scholar
4. Sze, S. M., Physics of Semiconductor Devices (John Wiley & Sons, New York, 1981), p. 791.Google Scholar
5. Schanda, J. D., in Handbook of applied Photometry, edited by DeCusatis, C. (American Institute of Physics, AIP Press, Woodbury, New York, 1997), p. 364.Google Scholar
6. Koh, J., Lee, Y., Fujiwara, H., Wronski, C.R., and Collins, R.W., Appl. Phys. Lett. 73, 1526 (1998).Google Scholar
7. Platz, R., Fischer, D., and Shah, A., Mat. Res. Soc. Symp. Proc. 377, 645 (1995).Google Scholar
8. Demichelis, F., Giorgis, F., and Pirri, C. F., Solid State Comm. 96, 17 (1995).Google Scholar
9. Okamoto, S., Hishikawa, Y., and Tsuda, S., Jpn. J. Appl. Phys. 36, 4251 (1997).Google Scholar
10. Jackson, J. D., Classical Electrodynamics, 2nd edition (John Wiley & Sons, Toronto, 1975), p. 278.Google Scholar
11.ibid., p. 285.Google Scholar
12. Solomon, I., Schmidt, M. P., Senemaud, C., and Driss-Khodja, M., J. Non-Cryst. Solids 97–98, 1091 (1987).Google Scholar
13. Solomon, I., Schmidt, M. P., Sénémaud, C., and Khodja, M. Driss, Phys. Rev. B 38, 13263 (1988).Google Scholar
14. Wemple, S. H., and DiDomenico, M. Jr, Phys. Rev. B 3, 1338 (1971).Google Scholar
15. Kamei, T., Stradins, P., and Matsuda, A., Appl. Phys. Lett. 74, 1707 (1999).Google Scholar
16. Tsu, D. V., Chao, B. S., and Ovshinsky, S. R., Appl. Phys. Lett. 71, 1317 (1997).Google Scholar
17. Branz, H. M., Phys. Rev. B 59, 5498 (1999).Google Scholar