Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-16T15:39:44.150Z Has data issue: false hasContentIssue false

Development of Pseudomorphic Structure in Ge Films Deposited on Si(100) at Low Temperatures

Published online by Cambridge University Press:  25 February 2011

P. F. Lyman
Affiliation:
Physics Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104 Physics Department, University of Florida, Gainesville, FL 32611
S. Thevuthasan
Affiliation:
Physics Department, University of Florida, Gainesville, Florida 32611 Chemistry Dept., University of Hawaii, Honolulu, HI 96822.
M. W. Grant
Affiliation:
Physics Department, University of Florida, Gainesville, Florida 32611
J. H. Hoogenraad
Affiliation:
Physics Department, University of Florida, Gainesville, Florida 32611
L. E. Seiberling
Affiliation:
Physics Department, University of Florida, Gainesville, Florida 32611
Get access

Abstract

We have studied the structure of 1 to 10 monolayer (ML) Ge films grown at room temperature on Si(100)–(2 × 1). Using transmission ion channeling spectroscopy, we have uncovered the first evidence for pseudomorphic structure in these films, contradicting the widely–held belief of amorphous growth at temperatures below 500 K. A model is proposed in which pseudomorphic domains constitute roughly half of the Ge films up to a critical thickness (∼4 ML), after which strain is relieved through defect introduction. Several of the films grown at room temperature were subsequently annealed for 20 min. at fixed temperatures ranging from 450 K to 790 K. A marked improvement in the epitaxial quality of the films is observed upon annealing that is consistent with growth proceeding from existing pseudomorphic domains.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bauer, E.G., et al., J. Mater. Res. 5, 852 (1990).Google Scholar
2. Asai, M., Ueba, H. and Tatsuyama, C., J. Appl. Phys. 58, 2577 (1985).Google Scholar
3. Gossmann, H. J., Feldman, L.C. and Gibson, W.M., Surf. Sci. 155, 413 (1985).Google Scholar
4. Ishimaru, N., Ueba, H. and Tatsuyama, C., Surf. Sci. 193, 193 (1988).Google Scholar
5. Kataoka, Y., Ueba, H. and Tatsuyama, C., J. Appl. Phys. 63, 749 (1988).Google Scholar
6. Iyer, S.S., et al., J. Cryst. Growth 95, 439 (1989).Google Scholar
7. Feldman, L.C., Mayer, J.W. and Picraux, S.T., Materials Analysis by Ion Channeling (Academic Press, NY, 1982).Google Scholar
8. Feldman, L.C., et al., Phys. Rev. Lett. 41, 1396 (1978).Google Scholar
9. Cheung, N. W. and Mayer, J.W., Phys. Rev. Lett. 46, 671 (1981).Google Scholar
10. Stensgaard, I. and Jakobsen, F., Phys. Rev. Lett. 54, 711 (1985).Google Scholar
11. Besenbacher, F., Stensgaard, I. and Mortensen, K., Surf. Sci. 191, 288 (1987).Google Scholar
12. Cheung, N. W., Rev. Sci. Instr. 51, 1212 (1980).Google Scholar
13. Bensalah, S., Lacharme, J.P. and Sébenne, C.A., Surf. Sci. 211 /212, 586 (1989).Google Scholar
14. Seiberling, L.E., et al., unpublished.Google Scholar
15. Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc. 133, 666 (1986).Google Scholar
16. Frank, F.C. and van der Merwe, J.H., Proc. Roy. Soc. London, A 198, 205 (1949).Google Scholar
17. Mo, Y.-W., et al., Phys. Rev. Lett. 63, 2393 (1989).Google Scholar
18. van der Merwe, J.H., J. Appl. Phys. 34, 123 (1963).Google Scholar
19. Bevk, J., et al., Appl. Phys. Lett. 49, 286 (1986).Google Scholar
20. Williams, A.A., et al., J. Phys. Condens. Matter 1, SB273 (1989).Google Scholar
21. Woodruff, D.P. and Delchar, T.A., Modern Techniques of Surface Science (Cambridge University Press, Cambridge, 1986).Google Scholar
22. Jorke, H., Herzog, H.-J. and Kibbel, H., Phys. Rev. B 40, 2005 (1989).Google Scholar
23. Eaglesham, D.J., Gossmann, H.-J. and Cerullo, M., Phys. Rev. Lett. 65, 1227 (1990).Google Scholar