Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T18:38:45.056Z Has data issue: false hasContentIssue false

Development of Non-acidic Poly(ethylene dioxythiophene):poly(styrene sulfonate) for Organic and Hybrid Photovoltaic Devices

Published online by Cambridge University Press:  21 November 2011

Yun-Ju Lee
Affiliation:
Department of Materials Science and Engineering, University of Texas at Dallas, 800 W. Campbell Rd. RL10, Richardson, TX 75080 Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185
Summer R. Ferreira
Affiliation:
Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185
R. Guild Copeland
Affiliation:
Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185
Diana L. Moore
Affiliation:
Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185
Julia W. P. Hsu
Affiliation:
Department of Materials Science and Engineering, University of Texas at Dallas, 800 W. Campbell Rd. RL10, Richardson, TX 75080 Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185
Get access

Abstract

We demonstrate improved compatibility of poly(ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) hole transport layer with acid-sensitive materials by addition of a simple base, NaOH or NH4OH, to the aqueous suspension to increase pH. Addition of NaOH to the acidic PEDOT:PSS allowed the deposition of PEDOT:PSS on top of an inverted poly(3-hexylthiophene):ZnO nanoparticle blend hybrid photovoltaic device, and improved device performance due to preservation of the ZnO electron acceptor. To quantitatively investigate the impact of base addition to hole transport layer properties and device performance, we deposited PEDOT:PSS with different pH values on inverted poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester bulk heterojunction devices. We find that NaOH modification results in a substantial work function decrease and series resistance increase. In contrast, the volatile NH4OH leaves PEDOT:PSS with minimal changes in film properties and device performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shaheen, S. E., Ginley, D. S., and Jabbour, G., MRS Bulletin 30, 10 (2005).Google Scholar
2. Dennler, G., Scharber, M. C., and Brabec, C. J., Adv. Mater. 21, 1323 (2009).Google Scholar
3. Shrotriya, V., Li, G., Yao, Y., Chu, C., and Yang, Y., Appl. Phys. Lett. 88, 073508 (2006).Google Scholar
4. Irwin, M. D., Buchholz, B., Hains, A. W., Chang, R. P. H., and Marks, T. J., Proc. Nat. Acad. Sci. 105, 2783 (2008).Google Scholar
5. Steim, R., Kogler, F. R., and Brabec, C. J., J. Mater. Chem. 20, 2499 (2010).Google Scholar
6. Arias, A., Granstrom, M., Thomas, D., Petritsch, K., and Friend, R., Phys. Rev. B 60, 1854 (1999).Google Scholar
7. Frohne, H., Shaheen, S., Brabec, C., Muller, D., Sariciftci, N., and Meerholz, K., Chemphyschem 3, 795 (2002).Google Scholar
8. Nardes, A. M., Kemerink, M., de Kok, M. M., Vinken, E., Maturova, K., and Janssen, R. A. J., Org. Elec. 9, 727 (2008).Google Scholar
9. Olson, D. C., Piris, J., Collins, R. T., Shaheen, S. E., and Ginley, D. S., Thin Solid Films 496, 26 (2006).Google Scholar
10. Lee, Y.-J., Lloyd, M. T., Olson, D. C., Grubbs, R. K., Lu, P., Davis, R. J., Voigt, J. A., and Hsu, J. W. P., J. Phys. Chem. C 113, 15778 (2009).Google Scholar
11. Gilot, J., Wienk, M. M., and Janssen, R. A. J., Appl. Phys. Lett. 90, 143512 (2007).Google Scholar
12. Moet, D. J. D., de Bruyn, P., and Blom, P. W. M., Appl. Phys. Lett. 96, 153504 (2010).Google Scholar
13. Park, H.-K., Jeong, J.-A., Park, Y.-S., Na, S.-I., Kim, D.-Y., and Kim, H.-K., Electrochem. Sol. Stat. Lett. 12, H309 (2009).Google Scholar
14. Jeong, J.-A., Lee, J., Kim, H., Kim, H.-K., and Na, S.-I., Sol. Energ. Mat. Sol. Cells 94, 1840 (2010).Google Scholar
15. de Kok, M., Buechel, M., Vulto, S., van de Weijer, P., Meulenkamp, E., de Winter, S., Mank, A., Vorstenbosch, H., Weijtens, C., and van Elsbergen, V., Phys. Stat. Sol. A 201, 1342 (2004).Google Scholar
16. Weijtens, C., van Elsbergen, V., de Kok, M., and de Winter, S., Org. Elec. 6, 97 (2005).Google Scholar
17. White, M. S., Olson, D. C., Shaheen, S. E., Kopidakis, N., and Ginley, D. S., Appl. Phys. Lett. 89, 143517 (2006).Google Scholar
18. Hau, S. K., Yip, H.-L., Baek, N. S., Zou, J., O’Malley, K., and Jen, A. K-Y., Appl. Phys. Lett. 92, 253301 (2008).Google Scholar
19. Beek, W. J. E., Wienk, M. M., Kemerink, M., Yang, X., and Janssen, R. A. J., J. Phys. Chem. B 109, 9505 (2005).Google Scholar
20. Lloyd, M. T., Olson, D. C., Lu, P., Fang, E., Moore, D. L., White, M. S., Reese, M. O., Ginley, D. S., and Hsu, J. W. P., J. Mater. Chem. 19, 7638 (2009).Google Scholar
21. Beek, W. J. E., Wienk, M. M., and Janssen, R. A. J., Adv. Func. Mater. 16, 1112 (2006).Google Scholar
22. Ferreira, S. R., Davis, R. J., Lee, Y.-J., Lu, P., and Hsu, J. W. P., Org. Elec. 12, 1258 (2011).Google Scholar
23. Rand, B. P., Burk, D. P., and Forrest, S. R., Phys. Rev. B 75, 115327 (2007).Google Scholar