Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-05T06:45:08.240Z Has data issue: false hasContentIssue false

Development of New Materials and Structures for Efficient Organic Solar Cells Fabricated with Ionically and Electrically Conducting Polymers

Published online by Cambridge University Press:  31 January 2011

Yoshinori Nishikitani
Affiliation:
yoshinori.nishikitani@eneos.co.jp, Nippon Oil Corporation, Central Technical Research Laboratory, Research & Development Division, Yokohama, Japan
Takaya Kubo
Affiliation:
ukubo@mail.ecc.u-tokyo.ac.jp, The University of Tokyo, Research Center for Advanced Science and Technology, Tokyo, Japan
Hideki Masuda
Affiliation:
masuda.hideki@nitech.ac.jp, Nagoya Institute of Technology, Department of Applied Chemistry, Graduate School of Engineering, Nagoya, Aichi, Japan
Get access

Abstract

New materials and structures have been developed for efficient organic solar cells, dye-sensitized solar cells (DCSs) and organic thin-film solar cells (OPVs). Some strategies for achieving high photon-to-electricity conversion efficiency in these solar cells are discussed, focusing on nanostructured materials. In the case of DSCs, unlike TiO2 nanoparticles, TiO2 nanotubes with suitable dimensions are expected to work as efficient light scatterers as well as to give large surface areas for charge separation. A strategy for designing triarylamine-functionalized ruthenium dyes, which display the high efficiency, is also proposed. Furthermore, OPVs based on donor/acceptor (D/A) block copolymers are discussed, focusing on the phase separation of donor and acceptor segments and their domain sizes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 O'Regan, B. and Grätzel, M., Nature, 353, 737 (1991).Google Scholar
2 Tang, C. W. Appl. Phys. Lett., 48, 183 (1986).Google Scholar
3 Hiramoto, M. Fujiwara, H. and Yokoyama, M. Appl. Phys. Lett., 58, 1062 (1991).Google Scholar
4 Sariciftci, N. S. Smilowitz, L. Heeger, A. J. and Wudl, F. Science, 258, 1474 (1992).Google Scholar
5 Green, M. A. Emery, K. Hishikawa, Y. and Warta, W. Prog. Photovolt: Res. Appl., 17, 320 (2009).Google Scholar
6 Grätzel, M., Bull. Jpn. Soc. Coord. Chem. 51, 3 (2008).Google Scholar
7 Altobello, S. Argazzi, R. Caramori, S. Contado, C. Fre, S. Da, Rubino, P. Chone, C. Larramona, G., and Bignozzi, C. A. J. Am. Chem. Soc., 127, 15342 (2005).Google Scholar
8 Dy, J. T. Tamaki, K. Sanehira, Y. Nakazaki, J. Uchida, S. Kubo, T. Segawa, H. Electrochemistry, 77, 206 (2009).Google Scholar
9 Wang, P. Zakeeruddin, S. M. Moser, J. E. Nazeeruddin, M. K. Sekiguchi, T. and Grätzel, M., Nature Materials, 2, 402 (2003).Google Scholar
10 Asano, T. Kubo, T. and Nishikitani, Y. J. Photochem. Photobiol. A Chemistry, 164, 111 (2004).Google Scholar
11 Kubo, W. Kambe, S. Nakada, S. Kitamura, T. Hanabusa, K. Wada, Y., and Yanagida, S. J. Phys. Chem. B, 107, 4374 (2003)Google Scholar
12 Kim, J. H. Kang, M-S. Kim, Y. J. Won, J. Park, N-G. and Kang, Y. S. Chem. Commun., 1662 (2004)Google Scholar
13 Kato, T. T, Kado, Tanaka, S. Okazaki, A. ans Hayase, S. J. Electrochem. Soc., 153, A626 (2006)Google Scholar
14 Nakayama, K. Kubo, T. and Nishikitani, Y. Jpn. J. Appl. Phys., 47, 6610 (2008); Appl. Phys. Exp. 1, 112301 (2008); Electrochem. Solid State Lett. 11 (3), C23 (2008).Google Scholar
15 Jin, Z. Masuda, H. Yamanaka, N. Minami, M. Nakamura, T. and Nishikitani, Y. ChemSusChem. 1, 901 (2008); J. Phys. Chem. C 113, 2618 (2009); Chem. Lett. 38 (1), 44 (2009).Google Scholar
16 Zhu, K. Neale, N. R. Miedaner, A. and Frank, A. J. Nano Lett. 7, 69 (2007).Google Scholar
17 Wang, Q. Zhu, K. Neale, N. R. and Frank, A. J. ibid, 9, 806 (2009).Google Scholar
18 Spanggaard, H. Krebs, F. C. Sol. Energy Mater. Sol. Cells, 83, 125 (2004).Google Scholar
19 Ma, W. Yang, C. Gong, X. Lee, K. and Heeger, A. J. Adv. Funct. Mat. 15, 1617 (2005).Google Scholar
20 Boer, B. de, Stalmach, U. Hutten, P. F. van, Melzer, C. Krasnikov, V. V. Hadziioannou, G. Adv. Funct. Mat. 42, 9097 (2001).Google Scholar
21 Sun, S. Sol. Energy Mater. Sol. Cells, 79, 257 (2003).Google Scholar
22Nippon Oil Corporation (2002), WO2003/075364.Google Scholar
23 Yablonovitch, E. and Cody, G. IEEE Trans. Electron Devices, ED-29, 300 (1982).Google Scholar
24 Green, M. A. Prog. Photovolt: Res. Appl. 10, 235 (2002).Google Scholar
25 Ferber, J. Luthe, J. Sol. Energy Mater. Sol. Cells, 54, 265 (1998).Google Scholar
26 Wang, Z.-S. Kawauchi, H. Kashima, T. and Arakawa, H. Cord. Chem. Rev. 248 1318 C. (2004).Google Scholar
27 Latimer, P. Bunsting, A. Pyle, B. E. and Moore, C. Appl. Opt. 178, 1352 (1978).Google Scholar
28 , Klein, Nazeeruddin, M. K. Liska, P. Censo, D. D. Hirata, N. Palomares, E. Durrant, J. R. and Grätzel, M., Inorg. Chem. 44, 178 (2005).Google Scholar
29 Scharber, M. C. Mühlbacher, D., Koppe, M. Denk, P. Waldauf, C. Heeger, A. J. and Brabec, C. J., Adv. Mater. 18, 789 (2006).Google Scholar
30 Sun, S. Fan, Z. Wang, Y. and Haliburton, J. J. Mater. Sci. 40, 1429 (2005).Google Scholar
31 Knupfer, M. Appl. Phys. A, 77, 623 (2003).Google Scholar
32 Nishikitani, Y. Uchida, S. and Kubo, T. in Nanostructured Materials for Solar Energy Conversion, Edited by Soga, T. (Elsevier Science Publisher, Amsterdam, 2006), p. 319.Google Scholar
33 Scully, S. R. and McGehee, M. D. J. Appl. Phys. 100, 034907 (2006).Google Scholar
34 Scully, S. R. Armstrong, P. B. Edder, C. Fréchet, J. M. J., McGehee, M. D. Adv. Mater. 19, 2961 (2007).Google Scholar