Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-11T20:44:56.822Z Has data issue: false hasContentIssue false

Development of Low-Temperature Ambipolar a-SiGe:H Thin-Film Transistors Technology

Published online by Cambridge University Press:  18 May 2012

Miguel A. Dominguez
Affiliation:
National Institute for Astrophysics, Optics and Electronics (INAOE), Electronics Department, Luis Enrique Erro No. 1, Puebla, C.P. 72840, Mexico.
Pedro Rosales
Affiliation:
National Institute for Astrophysics, Optics and Electronics (INAOE), Electronics Department, Luis Enrique Erro No. 1, Puebla, C.P. 72840, Mexico.
Alfonso Torres
Affiliation:
National Institute for Astrophysics, Optics and Electronics (INAOE), Electronics Department, Luis Enrique Erro No. 1, Puebla, C.P. 72840, Mexico.
Mario Moreno
Affiliation:
National Institute for Astrophysics, Optics and Electronics (INAOE), Electronics Department, Luis Enrique Erro No. 1, Puebla, C.P. 72840, Mexico.
Get access

Abstract

We present the fabrication and characterization of low-temperature ambipolar thin-film transistors (TFTs) based on hydrogenated amorphous silicon-germanium (a-SiGe:H) as active layer. Inverted staggered a-SiGe:H TFTs were fabricated on Corning glass. Spin-on glass silicon dioxide was used as gate dielectric to improve the quality of the dielectric-semiconductor interface. For positive gate bias the transfer characteristic showed n-type TFT behavior, while for negative gate bias p-type behavior was observed. The n-type region exhibits subthreshold slope of 0.45 V/decade while the p-type region shows a subthreshold slope of 0.49 V/decade.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gleskova, H., Wagner, S. and Suo, Z., Mater. Res. Soc. Symp. Proc., 508, 73 (1998).CrossRefGoogle Scholar
Moustapha, O., Abramov, A., Daineka, D., Oudwan, M., Bonnassieux, Y. and Roca i Cabarrocas, P., Phys. Status Solidi C 7, 35, 1140 (2010).Google Scholar
Wu, B., Hao, C., Wu, T., Chen, M., Jow, M. and Chen, H., IEEE Trans. Electron. Devices 36, 12, 2903 (1989).Google Scholar
Neudeck, G., Bare, H. and Chung, K., IEEE Trans. Electron. Devices ED-34, 2, 344 (1987).CrossRefGoogle Scholar
Pfleiderer, H., IEEE Trans. Electron. Devices ED-33, 1, 145 (1986).CrossRefGoogle Scholar
Subramaniam, A., Cantley, K., Stiegler, H., Chapman, R. and Vogel, E., IEEE Trans. Electron. Devices, DOI:10.1109/TED.2011.2176737 (2011).Google Scholar
Lee, C., Sazonov, A., Rad, M., Chaji, G. and Nathan, A., Mater. Res. Soc. Symp. Proc., 910, A22–05 (2006).Google Scholar
Lin, C., Yeh, R., Li, I. and Hong, J., Solid State Electronics, 47, 1787 (2003).CrossRefGoogle Scholar
Rosales Quintero, P., Torres Jacome, A., Murphy Arteaga, R., De la Hidalga Wade, F. J., Marsal, L. F., Cabre, R., and Pallarès, J., J. Appl. Phys., 97, 8 (2005).CrossRefGoogle Scholar
Rosales-Quintero, P., Torres-Jacome, A., Murphy-Arteaga, R. and Landa-Vázquez, M., Semiconductor Sci. Technol., 19, 3 (2004).CrossRefGoogle Scholar
Dominguez, M., Rosales, P., Torres, A., Moreno, M. and Orduña, A., Thin-Solid Films, DOI: 10.1016/ j.tsf.2012.03.013 (2012).Google Scholar
Gleskova, H., Wagner, S., Gasparik, V. and Kovac, P., J. Electrochem., 148, G370 (2001).CrossRefGoogle Scholar
Huang, J. J., Liu, C. J., Lin, H. C., Tsai, C. J., Chen, Y. P., Hu, G. R. and Lee, C. C., J. Phys. D: Appl. Phys., 41, 245502 (2008).CrossRefGoogle Scholar