Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-25T16:13:05.959Z Has data issue: false hasContentIssue false

Development of Large High-Quality Chalcopyrite Single Crystals for Nonlinear Optical Applications

Published online by Cambridge University Press:  10 February 2011

W. Ruderman
Affiliation:
INRAD, Inc., 181 Legrand Avenue, Northvale, NJ 07647, wruderman@inrad.com
I. Zwieback
Affiliation:
INRAD, Inc., 181 Legrand Avenue, Northvale, NJ 07647, wruderman@inrad.com
Get access

Abstract

Striking progress has been made in the development of thigh optical quality, large size and low absorbing single crystals of ZnGeP2, AgGaS2 and CdGeAs2. This will now enable continuously tunable infrared laser sources to be built covering the spectral region from 3.9 to 11 µm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wyckoff, R.W.G., Crystal Structures, 2nd ed. (Interscience Publishers, New York, 1964), p. 338.Google Scholar
2. Buehler, E. and Wernick, J.H., J. Crys. Growth, 8, 624 (1971).Google Scholar
3. Buehler, E., Wemick, J.H. and Wiley, J.D., J. Elect. Mat., 2, 445 (1973).Google Scholar
4. Xing, G.C. and Bachmann, K.J., Appl. Phys. Lett., 56, 271 (1990).Google Scholar
5. Tsveybak, I., Ruderman, W. and Maffetone, J., NSF Phase I Final Report No. DMI-9461802, INRAD, 1995 (unpublished).Google Scholar
6. Brudnyi, V.N., Budnitskii, D.L., Krivov, M.A., Masagutova, R.V., Prochukhan, V.D. and Rud, Yu.V., Phys. Stutsu Solidi A, 50, 379 (1978).Google Scholar
7. Shunemann, P.G., Drevinsky, P.J. Ohmer, M.C., Michael, W.C. and Fernelius, N.C., Mater. Res. Soc. Symp. Proc., 354, 729 (1995).Google Scholar
8. Brudnyi, V.N., Budnitskii, D.L., Krivov, M.A. and Melev, V.G., Phys. Status Solidi A, 35, 425 (1976).Google Scholar
9. Shunemann, P.G., Drevinsky, P.J. and Ohmer, M.C., Mater. Res. Soc. Symp. Proc., 354, 579 (1995).Google Scholar
10. Korczak, P. and Staff, C.B., J. Crys. Growth, 24/25, 386 (1987).Google Scholar
11. Matthes, H., Viehmann, R. and Marschall, N., Appl. Phys. Lett., 26, 237 (1975).Google Scholar
12. Route, R.K., Feigelson, R.S., Raymakers, R.J. and Choy, M.M., J. Crys. Growth, 33, 239 (1976).Google Scholar
13. Fiegelson, R.S. and Route, R.K., Opt. Eng., 26, 113 (1987).Google Scholar
14. Ruderman, W., Maffetone, J., Zelman, D.E. and Poirier, D.M., Mat. Res. Soc. Symp. Proc., 484, 518 (1998).Google Scholar
15. Vodopyanov, K.L., Maffetone, J.P., Zwieback, I. and Ruderman, W., Appl. Phys. Lett., 75, 1204 (1999).Google Scholar
16. Shunemann, P.G. and Pollak, T.M., J. Crys. Growth, 174, 272 (1997).Google Scholar
17. Zwieback, I., Perlov, D., Maffetone, J.P. and Ruderman, W., Appl. Phsy. Lett., 73, 2185 (1998).Google Scholar
18. Barnes, N.B. (private communication).Google Scholar
19. Kato, K. (private communication).Google Scholar