Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T23:18:32.316Z Has data issue: false hasContentIssue false

Development of Chromophores Based on the Dicyanomethylene Acceptor Group

Published online by Cambridge University Press:  21 February 2011

Susan Ermer
Affiliation:
Lockheed Missiles and Space Company, Inc., Palo Alto Research Laboratory, O/9350, B/204, 3251 Hanover Street, Palo Alto, CA 94304
Steven M. Lovejoy
Affiliation:
Lockheed Missiles and Space Company, Inc., Palo Alto Research Laboratory, O/9350, B/204, 3251 Hanover Street, Palo Alto, CA 94304
Doris S. Leung
Affiliation:
Lockheed Missiles and Space Company, Inc., Palo Alto Research Laboratory, O/9350, B/204, 3251 Hanover Street, Palo Alto, CA 94304
Get access

Abstract

We have used DCM/polyimide guest-host films for a series of device demonstrations, including demonstrations of high speed, low voltage digital and analog switching. Although useful for such demonstrations, DCM tends to out diffuse at polyimide cure temperatures, motivating the search for related compounds with similar activity, transparency, processibility, and greater thermal stability. We have designed, synthesized, and characterized a series of chromophores with related molecular structures. Like DCM, all of these chromophores share the dicyanomethylene [>C=C(CN)2] acceptor group. Some of these compounds are conventional donor-acceptor chromophores, while others fall into the class of lambda-shaped donor-acceptor-donor (DAD) compounds. An acceptor-donor-acceptor (ADA) chromophore has also been prepared and characterized. The donor-acceptor analog studies utilize a variation on the Knoevenagel condensation reaction used to make DCM, substituting isophorone for 4-pyranone to avoid the formation of mixtures. These reactions lead to the DCI series of compounds. We will describe progress in our investigations of these series of compounds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hammond, P.R., Optics Comm., 29(3), 331333 (1979).Google Scholar
2. Ermer, S., Valley, J.F., Lytel, R., Lipscomb, G.F., Eck, T.E. Van, and Girton, D.G., Appl. Phys. Lett., 61, 22722274 (1992).Google Scholar
3. Girton, D.G., Anderson, W.W., Valley, J.F., Eck, T.E. Van, Dries, L.J., Marley, J.A. and Ermer, S., to appear in proceedings of Washington D.C. ACS meeting, August 1994.Google Scholar
4. Ermer, S., Valley, J.F., Lytel, R., Lipscomb, G.F., Eck, T.E. Van, Girton, D.G., Leung, D.S., and Lovejoy, S.M., in Organic and Biological Optoelectronics, Rentzepis, P.M., Ed., Proc. SPIE, 1853, 183192 (1993).Google Scholar
5. Ermer, S., Lovejoy, S.M., and Leung, D.S., to appear in proceedings of Washington D.C. ACS meeting, August 1994.Google Scholar
6. Ermer, S., Leung, D., Lovejoy, S., Valley, J., and Stiller, M., in Organic Thin Films for Photonic Applications Technical Digest, 1993, Vol.17 (Optical Society of America, Washington, D.C., 1993), pp 5053; S. Ermer, D.G. Girton, D.S. Leung, S.M. Lovejoy, J.F. Valley, T.E. Van Eck, and L.-T. Cheng, Nonlinear Optics, in press.Google Scholar
7. Yamamoto, H., Katogi, S., Watanabe, T., Sato, H., Miyata, S., and Hosomi, T., App. Phys. Lett., 60, 935937 (1992).Google Scholar
8. Girton, D., Ermer, S., Valley, J.F., and Eck, T.E. Van, in Organic Thin Films for Photonic Applications Technical Digest, 1993, Vol.17 (Optical Society of America, Washington, D.C., 1993), pp 7072.Google Scholar
9. Lemke, R., Chem. Ber., 103, 18941899 (1970); R. Lemke, Synthesis, 359–361 (1974); R. Lemke, German Patent 2,345,189.Google Scholar
10. Mignani, G., Soula, G., and Meyrueix, R., French Patent 2,636,441.Google Scholar
11. Gadret, G., Kajzar, F., and Raimond, P., in Nonlinear Optical Properties of Organic Materials IV, Singer, K.D., Ed., Proc. SPIE, 1560, 226237 (1991).Google Scholar
12. Cheng, L-T., Tam, W., Stevenson, S.H., Meredith, G.R., Rikken, G., and Marder, S. R., J. Phys. Chem., 95, 1063110643 (1991).Google Scholar
13. Singer, K. D., Kuzyk, M. G., and Sohn, J. E., J. Opt. Soc. Am. B4, 968976 (1987).Google Scholar
14. Ermer, S., Lovejoy, S.M., Leung, D.S., and Moylan, C.R., Chem. Mater., in preparation.Google Scholar
15. Lemke, R., Synthesis, 359–361 (1974).Google Scholar
16. Garuti, L., Roberti, M., Leoni, A, and Brigidi, P., Pharmazie, 45, 863864 (1990).Google Scholar