Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-18T10:15:54.926Z Has data issue: false hasContentIssue false

Development of an Inert Gas Condensation Based Ion Source for the Generation of Strong Beams of Large Cluster Ions

Published online by Cambridge University Press:  28 February 2011

H. W. Sarkas
Affiliation:
Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
L. H. Kidder
Affiliation:
Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
J. G. Eaton
Affiliation:
Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
K. M. McHugh
Affiliation:
Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
K. H. Bowen
Affiliation:
Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
Get access

Abstract

We report on the further development of an ion source for producing intense, continuous beams of large positive and negative cluster ions comprised of high temperature materials. This device, the Smoke-Ion Source, is the result of combining inert gas condensation methods with techniques for injecting electrons directly into expanding jets. We demonstrate the capability of this ion source to generate strong beams of cluster ions comprised of materials including metals, semiconductors, and metal oxide ceramics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Andres, R.P.. Averback, R.S.. Brown, W.L.. Brus, L.E.. Goddard, W.A. III. Kaldor, A.. Louie, S.G.. Moscovits, M.. Peercy, P.S.. Riley, S.J., Siegel, R.W.. Spaepen, F.. Wang, Y.. J. Matter Res. 4, 704 (1989).CrossRefGoogle Scholar
2. Yamada, I. and Takagi, T.. Thin Solid Films 80. 105 (1981).CrossRefGoogle Scholar
3. Johar, S.S. and Thompson, D.A.. Surf. Sci. 90. 319 (1979).Google Scholar
4. McHugh, K.M.. Sarkas, H.W.. Eaton, J.G.. Westgate, C.R.. Bowen, K.H.. Z. Phys. D. 12, 3 (1989).Google Scholar
5. Sarkas, H.W.. Kidder, L.H.. Eaton, J.G.. Wimer, N.G.. McHugh, K.M.. Bowen, K.H.. in Proceedings nf the 1990 CRDEC Scientific Cnnferpnrp on Obscuration and Aerosol Research, in press.Google Scholar
6. Yokozeki, A. and Stein, G.D.. J. Appl. Phys. 42. 2224 (1978).Google Scholar
7. Mann, D.M. and Broida, H.P.. J. Appl. Phys. 44. 4950 (1973).Google Scholar
8. Martin, T.P.. J. Chem. Phys., 81. 4426 (1984).Google Scholar
9. Muhlbach, J.. Pfau, P.. Sattler, K.. Recknagel, E.. Z. Phys. B. 42, 233 (1982).Google Scholar
10. Frank, F.. Schulze, W.. Tesche, B.. Urban, J.. Winter, B.. Surf. Sci. 156.,90 (1985).Google Scholar
11. Riley, S.J.. Parks, E.K.. Mao, C.R.. Pobo, L.G.. Wexler, S.. J. Phys.Chem. 86. 3911 (1982).Google Scholar
12. Kuiper, A.E.T.. Thomas, G.E.. Schouten, W.J., J. Cryst. Grow. 51. 17 (1981).CrossRefGoogle Scholar
13. Farley, R.W.. Ziemann, P.J.. Keesee, R.G.. Funasaka, H.. Castleman, A.W. Jr.. to be published.Google Scholar
14. Haberland, H.. Schindler, H.G.. Worsnop, D.R.. Ber. Bunsenges. Phys. Chem. 88. 270 (1984).Google Scholar
15. Coe, J.V.. Snodgrass, J.T.. Freidhoff, C.B.. McHugh, K.M.. Bowen, K.H.. J. Chem. Phys. 57. 618 (1986).Google Scholar
16. Alexander, M.L., Johnson, M.A., Levinger, N.E.. Lineberger, W.C.. Phys. Rev. Lett. 51. 976 (1986).Google Scholar
17. Cheshnovsky, O., Pettiette, C.L., Smalley, R.E.. in Ion and Cluster Ion Spectroscopy and Structure, edited by. Maier, J.P. (Elsevier. Amsterdam, 1989). p. 373.Google Scholar
18. Kratschmer, W.. Sorg, N.. Huffman, D.R.. Surf. Sci. 156. 814 (1985).Google Scholar
19. Haufler, R.E.. Conceicao, J.. Chibante, L.P.F.. Chai, Y.. Byrne, N.E., Flanagan, S.. Haley, M.M., O'Brien, S.C.. Pan, C.. Xiao, Z.. Billups, W.E., Ciufolini, M.A.. Hauge, R.H.. Margrave, J.L.. Wilson, L.J.. Curl, R.F.. Smalley, R.E.. J. Phys. Chem.. in press.Google Scholar