Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-05T23:58:09.805Z Has data issue: false hasContentIssue false

Development and Implementation of New Volatile Cd and Zn Precursors for the Growth of Transparent Conducting Oxide Thin Films Via Mocvd

Published online by Cambridge University Press:  10 February 2011

J.R. Babcock
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL 60208-3113
A. Wang
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL 60208-3113
N.L. Edleman
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL 60208-3113
D.D. Benson
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL 60208-3113
A.W. Metz
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL 60208-3113
M.V. Metz
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL 60208-3113
T.J. Marks
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL 60208-3113, tjmarks@casbah.acns.nwu.edu
Get access

Abstract

For the growth of thin zinc group metal oxide films [i.e. cadmium oxide (CdO), cadmium stannate (Cd2SnO4), and zinc oxide (ZnO)] via metal-organic chemical vapor deposition (MOCVD), volatile Cd and Zn precursor families are needed. Starting with Cd, β-ketoiminates of varying substitution were prepared to elucidate structure-property relationships. The nature of the ligand substituents strongly influences the melting point (liquid precursors are desired). Unlike conventional Cd β-diketonates, these complexes are monomeric as determined by x-ray crystallography. Despite these advantageous characteristics, attempts to grow CdO thin films in a cold-wall MOCVD reactor using two such derivatives were not successful. This class of Cd complex appears to decompose thermally with time-- a likely cause of the poor performance. Therefore, a new series of more thermally stable Cd precursors was sought. Using the chelating diamine N,N,N1,N1-tetramethylethylenediamine (TMEDA), monomeric β-diketonates were prepared. The molecular structure of Cd(hfa)2(TMEDA) (hfa = 1,1,1,5,5,5-hexafluoropentane-2,4-dionate) confirms the monomeric structural assignment. This series of Cd complexes is appreciably more volatile and sublime more cleanly than the aforementioned β-ketoiminates, as determined by vacuum thermogravimetric analysis (TGA). In addition to this advantageous characteristic, these complexes are easily prepared under ambient laboratory conditions from commercially available starting materials in a single step. Following the protocol established for Cd, a volatile series of Zn precursors was also prepared. For the Zn series, the melting point was effectively tuned through variation of both the β-diketonate and diamine ligands. The use of the Cd and Zn β-diketonate precursors in the successful growth of CdO and ZnO thin films, respectively, by MOCVD is also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 (a) Jarzebski, Z. M., Phys. Status Solidi A 71, p. 13 (1982). (b) C. G. Granquist, Appl. Phys. A, 52, p. 83 (1991).Google Scholar
2 Wang, A., Edleman, N. L., Babcock, J. R., Marks, T. J., Lane, M. A., Brazis, P. W., Kannewurf, C. R., MRS Symp. Series, in press.Google Scholar
3 Wu, X., Coutts, T. J., and Mulligan, W. P., J. Vac. Sci. Technol. A 15, p. 1057 (1997).Google Scholar
4 Alamri, S. N. and Brinkman, A. W., J. Phys. D: Appl. Phys. 33, p. Li (2000).Google Scholar
5 Thin films of CdO have been deposited using spray pyrolysis, see: Ferroard, R. and Rodriguez, J. A., Thin Solid Films 347, p. 295 (1999).Google Scholar
6 Dumont, H., Fujita, S., and Fujita, S., J. Cryst. Growth 145, p. 570 (1994); W. S. Kuhn, D. Angermeier, R. Druilhe, W. Gebhardt, and R. Triboulet, J. Cryst. Growth 183, p. 535 (1998); S. Stolyarova, N. Amir, and Y. Nemirovsky, J. Cryst. Growth 184/185, p. 144 (1998); M. Niraula, T. Aoki, Y. Nakanishi, and Y. Hatanaka, J. Appl. Phys. 83, p. 2,656 (1998).Google Scholar
7 Coutts, T. J., private communication.Google Scholar
8 Maslen, E. N., Grearey, T. M., Raston, C. L., and White, A. H., J. Chem. Soc., Dalton Trans., p. 400 (1975).Google Scholar
9 (a) Lanthanide precursors: Belot, J. A., Wang, A. C., McNeeley, R. J., Liable-Sands, L., Rheingold, A. L., and Marks, T. J., Adv. Mater. (Chem. Vap. Dep.) 5, p. 65 (1999). (b) Heavier alkaline earth precursors: D. L. Schulz, B. J. Hinds, D. A. Neumayer, C. L. Stern, and T. J. Marks, Chem. Mater. 5, p. 1,605 (1993). (c) Mg2+ precursor: J. R. Babcock, D. D. Benson, A. Wang, N. L. Edleman, J. A. Belot, M. V. Metz, and T. J. Marks, Adv. Mater. (Chem. Vap. Dep.), in press.Google Scholar
10 Zn2+ and Cd2+ Pβ-diketonates have been complexed with diamines, but not for MOCVD applications. See for example: Dunstan, P. O., J. Chem. Eng. Data 44, p. 243 (1999); L. Bustos, J. H. Green, J. L. Hencher, M. A. Khan, and D. G. Tuck, Can. J. Chem. 61, p. 214 (1983); R. B. Bindy and M. Goodgame, Inorg. Chim. Acta 36, p. 281 (1978).Google Scholar
11 Ovsiannikov, V. P., Lashkarev, G. V., Mazurenko, Y. A., and Bugaeva, M. E., Proc. Electrochem. Soc. 97, p. 1020 (1997).Google Scholar
12 Cotton, F. A. and Wood, J. S., Inorg. Chem. 3, p. 245 (1964).Google Scholar
13 Buirger, H. Sawodny, W., Wannagat, U., J. Organomet. Chem. 3, p. 113 (1965).Google Scholar
14 Hinds, B. J., McNeely, R. J., Studebaker, D. L., Marks, T. J., Hogan, T. P, Schindler, J. L., Kannewurf, C R., Zhang, X. F., and Miller, D., J. Mater. Res. 12, p. 1214 (1997).Google Scholar
15 (a) Gardiner, R., Brown, D. W., Kirlin, P. S. and Rheingold, A. L., Chem. Mat. 3, p. 1053 (1991). (b) S. H. Shamlian, M. L. Hitchman, S. L. Cook and B. C. Richards, J. Mater. Chem. 4, p. 81 (1994). (c) G. Malandrino, I. L. Fragala, D. A. Neumayer, C. L. Stern, B. J. Hinds and T. J. Marks, J. Mater. Chem. 4, p. 1,061 (1994). (d) T. J. Marks, J. A. Belot, C. J. Reedy, R. J. McNeely, D. B. Studebaker, D. A. Neumayer and C. L. Stern, J. Alloy. Compd. 251, p. 243 (1997).Google Scholar
16 Complete crystallographic data for 2b, 3c, and 4a has been deposited at the Cambridge Structure Database.Google Scholar
17 Gulino, A., Castelli, F., Dapporto, P., Rossi, P., and Fragala, I., Chem. Mater. 12, p. 548 (2000).Google Scholar
18 Hinds, B. J., McNeely, R. J., Studebaker, D. B., Marks, T. J., Hogan, T. P., Schindler, J. L., Kannewurf, C. R., Zhang, X. F., Miller, D. J., J. Mater. Res. 12, p. 1214 (1997).Google Scholar
19 Murthy, L. C. S. and Rao, K. S. R. K., Bull. Mat. Sci. 22, p. 953 (1999).Google Scholar
20 Subramanyam, T. K., Krishna, B. R., Uthanna, S., Naidu, B. S., Reddy, P. J., Vacuum 48, p. 565 (1997).Google Scholar
21 Wang, A., Babcock, J.R., Edleman, N.L., Yang, S., Freeman, A.J., Lane, M.A., Kannewurf, C.R., Marks, T.J., submitted for publication.Google Scholar