Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-21T15:51:06.836Z Has data issue: false hasContentIssue false

Deuterium Diffusion, Trapping and Stability in Buried Silicon Dioxide Layers

Published online by Cambridge University Press:  10 February 2011

A. Boutry-Forveille
Affiliation:
LPSB-CNRS, 1 place Aristide Briand, 92195 Meudon cedex (France)
A. Nazarov
Affiliation:
Institute of Semiconductors, Academy of Sciences, Prospekt Nauki 45, 252650 Kiev, Ukraine.
D. Ballutaud
Affiliation:
LPSB-CNRS, 1 place Aristide Briand, 92195 Meudon cedex (France)
Get access

Abstract

The interaction of hydrogen (deuterium used as tracer) with Si-Si02-Si buried oxide layers (BOX) prepared by thermal oxidation or by oxygen implantation (SIMOX) are investigated using Secondary Ion Mass Spectrometry (SIMS) measurements combined with effusion experiments. The sample deuteration is performed at different temperatures between 150 and 300°C using a radiofrequency plasma. In SIMOX samples, the deuterium diffusion profiles analysed by SIMS show deuterium trapping on implantation defects, and deuterium diffusion in the silicon substrate by permeation through the oxide layer for temperatures higher than 250°C. The deuterium is still detected in the buried oxide layers after isothermal annealing at 600°C during 2 hours. The deuterium trapping at the siliconsilicon dioxide interfaces is analysed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Givargizov, E. I., Loukin, V. A. and Limanov, A. B. in Physical and Technical Problems of SOI Structures and Devices, ed. by Colinge, J-P., Lysenko, V. S. and Nazarov, A N. (NATO ASI series, Kluwer Academic Publishers, Dordrecht, 1994) p.27.Google Scholar
2. Chari, A., de Mierry, P., Menikh, A. and Aucouturier, M., Rev. Phys. Appl. 22, 655 (1987).Google Scholar
3. Ballutaud, D., Aucouturier, M. and Babonneau, F., Appl. Phys. Lett. 49, 1622 (1986).Google Scholar
4. Brower, K. L., Appl. Phys. lett. 43, 1111 (1983).Google Scholar
5. Myers, S. M., Brown, G. A., Revesz, A. G. and Hughes, H. L., J.Appl.Phys. 73(5) 2196 (1993).Google Scholar
6. Lisovskii, I. P., Litovchenko, V. G., Romanova, G. P., Didenko, P. I. and Schmidt, E. G., Phys. Stat. Sol. (a) 142, 107 (1994).Google Scholar
7. Mathiot, D., Phys. Rev. B 40, 5867 (1989).Google Scholar
8. Rizk, R., de Mierry, P., Ballutaud, D. and Aucouturier, M., Phys. Rev. B 44, 6141 (1991).Google Scholar
9. Ballutaud, D., de Mierry, P., Pesant, J.-C., Rizk, R., Boutry-Forveille, A. and Aucouturier, M., Mat. Science Forum, vol.83–87, pp. 4550 (1992).Google Scholar
10. Lusson, L., Elkaim, P., Correia, A. and Ballutaud, D., J. Phys. III (France) 5, 1173 (1995).Google Scholar
11. Nickel, N. H., Jackson, W. B. and Walker, J., Phys. Review B 53(12) 7750 (1996).Google Scholar