Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T09:45:05.662Z Has data issue: false hasContentIssue false

Determination of Hydrogen in Semiconductors and Related Materials by Cold Neutron Capture Prompt Gamma-Ray Activation Analysis

Published online by Cambridge University Press:  22 February 2011

Rick L. Paul
Affiliation:
Inorganic Analytical Research Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
Richard M. Lindstrom
Affiliation:
Inorganic Analytical Research Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
Get access

Abstract

A reliable nondestructive method for measuring trace amounts of hydrogen in semiconductors and related materials has long been needed. Cold neutron capture prompt γ-ray activation analysis (CNPGAA) is a nondestructive, multielement technique which has found application in the measurement of trace amounts of hydrogen. The sample is irradiated by a beam of “cold” neutrons; the presence of hydrogen is confirmed by the detection of a 2223 keV gamma-ray. The technique gives bulk analyses (the neutron and gamma radiation penetrate the sample), the hydrogen peak is free of interferences, and the results are independent of the chemical form of hydrogen present. The instrument is capable of detecting less than 10 mg/kg of hydrogen in many matrices. We have used the technique to measure hydrogen levels in a dielectric film on a silicon wafer, semiconductor grade germanium, and quartz.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Myers, S. M., Baskes, M. I., Birnbaum, H. K., Corbett, J. W., DeLeo, G. G., Estreicher, S. K., Haller, E. E., Jena, P., Johnson, N. M., Kirchheim, R., Pearton, S. J., and Stavola, M. J., Rev. Mod. Phys. 64, 559 (1992).Google Scholar
2. Pearton, S. J., Corbett, J. W., and Shi, T.-S, Appl. Phys. A. 43, 153 (1987).Google Scholar
3. Pankove, J. I., Carlson, D. E., Berkeyheiser, J. E., and Wance, R. O., Phys. Rev. Lett. 51, 2224 (1983).CrossRefGoogle Scholar
4. Pankove, J. I., Wance, R. O., Berkeyheiser, J. E., Appl. Phys. Lett. 45, 1100 (1984).Google Scholar
5. Johnson, N. M., Herring, C., and Chadi, D. J., Phys. Rev. Lett. 56, 2224 (1986).Google Scholar
6. Johnson, N. M., Herring, C., and Chadi, D. J., Phys. Rev. Lett. 59, 2116 (1987).Google Scholar
7. Paesler, M., Agarwal, S. C., and Zallen, R., Eds., Proceedings of the 13th International C6nference on Amorphous and LiquidSemiconductors J: Non-Cryst. Solids, 114 (1989).Google Scholar
8. Hall, R. N., IEEE Trans. Nucl. Sci. NS-21, No. 1, 260 (1974).Google Scholar
9. Hall, R. N., Inst. Phys. Conf. Ser. 23, 190 (1975).Google Scholar
10. Haller, E. E., B. Jo6s, and Falicov, L. M., Phys. Rev. B 21, 4729 (1980).Google Scholar
11. Joós, B., Hailer, E. E., and Falicov, L. M., Phys. Rev. B 22, 832 (1980).Google Scholar
12. Paul, R. L., Lindstrom, R. M., and Vincent, D. H., J. Radioanal. Nucl. Chem., in press.Google Scholar
13. Lindstrom, R. M., Paul, R. L., and Vincent, D. H., J. Radioanal. Nucl. Chem., in press.Google Scholar
14. Paul, R. L. and Lindstrom, R. M., Review of Progress in Quantitative Nondestructive Evaluation Vol. 13, ed. Thompson, D. O. and Chimenti, D. E., Center for NDE/Iowa State University, Ames, IA, in press.Google Scholar
15. Newmann, D. A., Copley, J. R. D., Reznik, D., Kamitakahara, W. A., Rush, J. J., Paul, R. L., and Lindstrom, R. M., J. Phys. Chem. Solids, in press.Google Scholar
16. Lindstrom, R. M., J. Res. Nat. Inst. Stand. Techn 98, 127 (1993)Google Scholar
17. Lindstrom, R. M., Zeisler, R., Vincent, D. H., Greenberg, R. R., Stone, C. A., Mackey, E. A., Anderson, D. L., and Clark, D. D., J. Radioanal. Nucl. Chem. 167, 121 (1993).Google Scholar
18. Anderson, D. L., Failey, M. P., Zoller, W. H., Walters, W. B., Gordon, G. E., Lindstrom, R. M., J. Radioanal. Chem. 63, 97 (1981).Google Scholar
19. Taylor, B. N. and Kuyatt, C. E., “Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results”, NIST Technical Note 1297, National Institute of Standards and Technology, U. S. Government Printing Office: Washington, DC, 1993.Google Scholar
20. D. Mildner, F. R., Nucl. Instrum. Methods A299, 416 (1990).Google Scholar
21. Chen, H., Downing, R. G., D. Mildner, F. R., Gibson, W. M., Kumakhov, M. A., Ponomarev, I. Yu., and Gubarev, M. V., Nature 357, 391 (1992).Google Scholar