Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T04:57:25.388Z Has data issue: false hasContentIssue false

Detailed Theoretical Investigation and Comparison of the Thermal Conductivities of n- and p-type Bi2Te3 Based Alloys

Published online by Cambridge University Press:  08 August 2013

Ö. Ceyda Yelgel
Affiliation:
School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, United Kingdom
Gyaneshwar P. Srivastava
Affiliation:
School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, United Kingdom
Get access

Abstract

In this work we present a detailed theoretical investigation of the thermal conductivities of n-type 0.1 wt.% CuBr doped 85% Bi2Te3 - 15% Bi2Se3 and p-type 3 wt% Te doped 20% Bi2Te3 - %80 Sb2Te3 single crystals. The thermal conductivity contributions arising from carriers, electron-hole pairs and phonons are computed rigorously in the temperature range $300\,{\rm{K}}\, \le \,T\, \le \,500\,{\rm{K}}$. In agreement with available experimental measurements we theoretically find that the lowest total thermal conductivity is 3.15 W K−1 m−1 at 380 K for the n-type alloy and 1.145 W K−1 m−1 at 400 K for the p-type alloy. Stronger mass-defect scattering is found to be responsible for the lower thermal conductivity of the p-type alloy throughout the temperature range of the study.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Rowe, D. M. and Bhandari, C. M., ‘Modern Thermoelectrics’ (Reston Publishing Company, Virginia, 1983).Google Scholar
Rowe, D. M., ‘Thermoelectrics Handbook’ (Taylor and Francis Group, London, 2006).Google Scholar
Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M. S., Chen, G., Ren, Z., Science 320 634 (2008).CrossRefGoogle Scholar
Venkatasubramanian, R., Siivola, E., Colpitts, T., and O’Quinn, , Nature 413 597 (2001).CrossRefGoogle Scholar
Goyal, V., Teweldebrhan, D., and Balandin, A. A., App. Phys. Lett. 97 133117 (2010).CrossRefGoogle Scholar
Zahid, F. and Lake, R., App. Phys. Lett. 97 212102 (2010).CrossRefGoogle Scholar
Hyun, D. B., Hwang, J. S., You, B. C., Oh, T. S., Hwang, C. W., J. Mat. Sci. 33 5595 (1998).CrossRefGoogle Scholar
Li, D., Sun, R. R., Qin, X. Y., Intermet. 19, 2002 (2011).CrossRefGoogle Scholar
Yelgel, Ö. C., Srivastava, G. P., Phys. Rev. B 85, 125207 (2012).CrossRefGoogle Scholar
Heikes, R. R. and Ure, R. W., Thermoelectricity, Science and Engineering (Interscience Publishers, New York, 1961).Google Scholar
Price, P. J., Phil. Mag. 46, 1252 (1955).CrossRefGoogle Scholar
Glassbrenner, C. J. and Slack, G. A., Phys. Rev. 134, A1058 (1964).CrossRefGoogle Scholar
Yelgel, Ö. C., Srivastava, G. P., J. Appl. Phys. 113, 073709 (2013).CrossRefGoogle Scholar
Srivastava, G. P., ‘The Physics of Phonons’ (Taylor and Francis Group, New York, 1990).Google Scholar
Holland, M. G., Phys. Rev. 134 A471 (1964).CrossRefGoogle Scholar
Silva, L. W. and Kaviany, M., Int. J. Heat and Mass 47 2417 (2004).CrossRefGoogle Scholar
Lide, D. R., ‘CRC Handbook of Chemistry and Physics’ (Taylor and Francis Group LLC, 87th Edition, 2007).Google Scholar
Ziman, J. M., ‘Electrons and Phonons’ (Clarendon Press, Oxford, 1960).Google Scholar