Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-28T19:37:09.548Z Has data issue: false hasContentIssue false

Design and Synthesis of New Conjugated Porphyrin Copolymers for Optical-Electronic Applications

Published online by Cambridge University Press:  10 February 2011

Biwang Jiang
Affiliation:
Department of Chemistry and Institute for Material Research, State University of New York at Binghamton, Binghamton, NY 13902.
Szu-Wei Yang
Affiliation:
Department of Chemistry and Institute for Material Research, State University of New York at Binghamton, Binghamton, NY 13902.
Phuong T. Lam
Affiliation:
Department of Chemistry and Institute for Material Research, State University of New York at Binghamton, Binghamton, NY 13902.
Wayne E. Jones Jr.
Affiliation:
Department of Chemistry and Institute for Material Research, State University of New York at Binghamton, Binghamton, NY 13902.
Get access

Abstract

New linear conjugated porphyrin polymers were synthesized by a palladium-catalyzed cross-coupling reaction of [5,15-bis(ethynyl)-10,20-bis (mesityl)porphyrin]zinc and diiodobenzene derivatives. Enhanced solubility of the conjugated porphyrin polymers was achieved by attachment of long alkyl ether or dialkyl amide groups to the aryl moiety, resulting in unambiguous characterization by 1H NMRLR, GPC, UV-Vis and fluorescence spectroscopies. The introduction of alkyl ether (electron donor) or dialkyl amide (electron acceptor) results in significant modulation of the electronic properties of the conjugated porphyrin polymers due to strong electronic coupling. The spectroscopic and electronic characterization of these materials provides for comparison to earlier preparations of ethynyl bridged conjugated copolymers in which electronic coupling was substantially weaker.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. (a) Anderson, H. L., Martin, S. J. and Bradley, D. D. C., Angew. Chem. Int. Ed. Engl., 1994, 33, 655657. (b) M. J. Therien, S. G. DiMagno, U.S. Patent 5,371,199.Google Scholar
2. Anderson, H. L., Inorg. Chem., 1994, 33, 972.Google Scholar
3. Crossley, M. J. and Bum, P.L, J. Chem. Soc. Chem. Commun., 1987, 3940.Google Scholar
4. Crossley, M. J. and Burn, P. L., J. Chem. Soc. Chem. Commun., 1991, 1569–1571.10.1039/c39910001569Google Scholar
5. Lin, V. S.-Y., DiMagno, S. and Therien, M. J., Science, 1994, 264, 1105.Google Scholar
6. Jiang, B., Yang, S., and Jones, W. E. Jr., Chem. Mater., 9, 2031 (1997).Google Scholar
7. Jiang, B., Yang, S. and Jones, W. E. Jr., Synthetic Metals., submitted.Google Scholar
8. (a) Osuka, A., Tanabe, N., Zhang, R -P., Maruyama, K., Chem. Lett. 1993, 15051508. (b) T. Nagata, A. Osuka, K. Maruyama, J. Am. Chem. Soc. 1990, 112, 3054–3 059.Google Scholar
9. Anderson, H. L., Walter, C. J., Vidal-Ferran, A., Hay, R. A., Lowden, P. A., Sanders, J. K. M., J. Chem. Soc. Perkin. Trans. 1. 1995, 22752279.10.1039/P19950002275Google Scholar
10. (a) Angiolilo, P. J., Lin, V. S.-Y. Vanderkooi, J. M., and Therien, M. J., J. Am. Chem. Soc., 1995, 117, 12514. (b) M. Chachisvilis, V. Chirony, A. M. Shulga, B. Kallebring, S. Lesson, and V. Sundstrom, J. Phys. Chem. 1996, 100, 13857. (c) V. S.-Y. Lin, M. J. Therien, Chem. Eur. J., 1995, I, 645.10.1021/ja00155a015Google Scholar
11. Bedioui, F. and Devynck, J., Acc. Chem. Res., 1995, 28, 3036.10.1021/ar00049a005Google Scholar
12. Jiang, B., Sahay, S., Jones, W., J. Chem. Soc. Chem. Commun., submitted.Google Scholar
13. Jiang, B., Yang, S., Sarno, D., Jones, W. E. Jr. manuscript in preparation.Google Scholar