Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T21:27:15.576Z Has data issue: false hasContentIssue false

Deposition of Boron Nitride Coatings by Reactive Rf Magnetron Sputtering: Correlation Between Boron and Nitrogen Contents and the Flux of Energetic Ar+ Ions at the Substrate

Published online by Cambridge University Press:  21 February 2011

V. Rigato
Affiliation:
INFN, Laboratori Nazionali di Legnaro, 35020 Legnaro (PD), Italy INFM, Dipartimento di Fisica, Università di Padova, 35131 Padova, Italy
M. Spolaore
Affiliation:
INFN, Laboratori Nazionali di Legnaro, 35020 Legnaro (PD), Italy Istituto Gas Ionizzati, Associazione EURATOM-ENEA-CNR, Padova, Italy
G. Della Mea
Affiliation:
INFN, Laboratori Nazionali di Legnaro, 35020 Legnaro (PD), Italy Dipartimento di Ingegneria dei Materiau, Università di Trento, 38050 Mesiano, Italy
Get access

Abstract

Thin films of BNxOy have been deposited by rf Reactive Magnetron Sputtering from a BN target in Ar+ plasma (1 Pa) at different substrate bias conditions. The possibility of obtaining dense and hard BN coatings at a target-to-substrate distance larger than the mean free path of the B and N atoms has been investigated.

In order to deduce the plasma potential and the ion density near the substrates, the discharge characteristics have been measured by means of an electrostatic probe of the Langmuir type properly coupled to the glow discharge for avoiding the rf interference. From the probe data both flux and energy of the Ar+ ions have been determined and correlated to the net contents of boron and nitrogen as measured by means of the N(d,p) and 11Β(p,α) nuclear reactions. The results of this study show that in the investigated experimental conditions the flux of energetic Ar+ ions at the substrates is insufficient for promoting the formation of cubic BN as confirmed by XRD, FT-IR and nanohardness measurements. The reported data agree with recent literature findings and support the need of monitoring both the bombarding rate and energy of the Ar ions in rf discharges if the c-BN deposition is to be attained in a reproducible manner.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Fujimoto, F., Mat. Sci. Forum 54 & 55, 45 (1990)Google Scholar
2 Kulikovsky, V. Yu., Shaginyan, L. R., Vereschaka, V. M., Hatynenko, N. G., Diamond Relat. Mater. 4, 113 (1995)Google Scholar
3 Burat, O., Bouchier, D., Stambouli, V., Gautherin, G., J. Appl. Phys. 68 (6), 2780 (1990)Google Scholar
4 Mèndez, J. M., Muhl, S., Andrade, E., Cota-Araiza, L., Farias, M., Soto, G., Diamond Relat. Mater. 3, 831 (1994)Google Scholar
5 Reinke, S., Kuhr, M., Kulish, W., Kassing, R., Diamond Relat. Mater. 8, 272 (1995)Google Scholar
6 Medlin, D. L., Friedmann, T. A., Mirkarimi, P. B., Mills, M. J., McCarty, K. F., Phys. Rev. 50 (11), 7884 (1994)Google Scholar
7 T. A. Friedmann, , Mirkarimi, P. B., Medlin, D. L., McCarty, K. F., Klaus, E. J., Boheme, D. R., Johnsen, H. A., Mills, M. J., Ottesen, D. K., J. Appl. Phys. 76 (5), 3088 (1994)Google Scholar
8 Kester, D. J., Messier, R., J. Appl. Phys. 72 (2), 504 (1992)Google Scholar
9 Tanabe, N., Hayashy, T., Iwaky, M., Diamond Relat. Mater. 1, 151 (1992)Google Scholar
10 Wituschek, H., Stopka-Ebler, H., Wolf, G. K., Surf. Coat. Tech. 74–75, 729 (1995)Google Scholar
11 Hofsäss, H., Ronning, C., Griesmeier, U., Gross, M., Reinke, S., Kuhr, M., Appl. Phy. Lett. 67 (1), 46 (1995)Google Scholar
12 Mieno, M., Yoshida, T., Jap. J. Appl. Phys. 29 (7), LI 175, (1990); Surf. Coat. Tech. 52, 87 (1992)Google Scholar
13 Bewilogua, K., Schütze, A., Kouptsidis, S., Lüthje, H. in Proceedings of the Applied Diamond Conference 1995: Applications of Diamond Films and Related Materials: p. 831838; ed. by Feldman, A., Tzeng, Y., Yarbrough, W.A., Yoshikawa, M. and Murakawa, M., NIST Special Publication 885, Washington (1995).Google Scholar
14 Ichiki, T., Momose, T., Yoshida, T., J. Appl. Phys. 75 (3), 1330 (1994)Google Scholar
15 Paranijpe, A. P., McVittie, J. P., Self, S. A., J. Appl. Phys. 67 (2), 6718 (1990)Google Scholar
16 Chapman, B. N., Glow discharge processes. John Wiley & Sons (1980), pp. 6570, 143169 Google Scholar
17 Clements, R. M., J. Vac. Sci. Technol. 15 (2), 193 (1978)Google Scholar
18 Braitwaite, N. St. J., Benjamin, N. M., Allen, J. E., J. Phys. E: Sci. Inst. 20, 1046 (1987)Google Scholar
19 Sabadil, H., Klagge, S., Kammeyer, M., Plasma Chem. Plasma Proc. 8 (4), 425 (1988)Google Scholar
20 Neumann, G., Bänziger, U., Kammeyer, M., Lange, M., Rev. Sci. Instrum. 64 (1), 19 (1993)Google Scholar
21 Laframboise, J. G., Institute for Aerospace Studies, Univ. of Toronto, UTIAS Rep. No. 100 (1966)Google Scholar
22 Sudit, I. D., Woods, R. C., J. Appl. Phys. 76 (8), 4488 (1994)Google Scholar
23 Winters, H. F., Kay, E., J. Appl. Phys. 38 (10), 3928 (1967)Google Scholar