Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-25T22:41:57.170Z Has data issue: false hasContentIssue false

Deposition and Evaluation of Micro-Crystalline Silicon for Use in Photoconducting Antennas

Published online by Cambridge University Press:  10 February 2011

Sripathi Yarasi
Affiliation:
Electrical and Computer Engineering Department, University of Waterloo Waterloo, Ontario N2L 3G 1, CANADA. syarasi@venus.uwaterloo.ca
Tajinder Manku
Affiliation:
Electrical and Computer Engineering Department, University of Waterloo Waterloo, Ontario N2L 3G 1, CANADA
Get access

Abstract

The importance of micro-crystalline silicon (μc-Si:H) for the photo-conducting dipole antenna application is investigated in this paper. The structural and optical properties of gc-Si:H films prepared by plasma enhanced chemical vapor deposition are studied with Raman spectra, scanning electron microscope, and ellipsometer measurements. The influence of grain size and defects on the opto-electronic characteristics of the photo-conducting dipole antenna is discussed. A sample of the antenna fabricated in our clean room laboratory is reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Auston, D.H., Cheung, K.P., and Smith, P.R., Appl. Phys. Lett. 45(3), 284286, (1984).Google Scholar
2 Smith, Peter R. and Auston, David H., IEEE J. Quantum Electron. 24(2), 255260, (1988).Google Scholar
3 Auston, D.H., Lavallard, P., Sol, N. and Kaplan, D., Appl. Phys. Lett. 36(1), 6668 (1980); A.M. Johnson, P.R. Smith, and J.C.Beans, ibid., 37(4), 371–373, (1980).Google Scholar
4 Karin, J.R., Downey, P.M. and Martin, R.J., IEEE J. Quantum Electron. QE–22, 677, (1986).Google Scholar
5 Carius, R., Finger, F., Backhausen, U., Luysberg, M., Hapke, P., Houben, L., Otte, M., and Overhof, H., Amorphous and Microcrystalline Silicon Technology, edited by Wigner, Sigurd, Hack, Michael, Schiff, Eric A., Schropp, Ruud and Schumizu, Isamu (Mat. Res. Soc. Proc. 467, Warrendale, PA, 1997), pp. 283294.Google Scholar
6 Kanicki, Jerzy, Amorphous and Micro-crystalline Semiconductor Devices, Vol-II: Materials and Devices Physics, (Artech House Inc., Boston, 1992) p. xxi.Google Scholar
7 Remanick, R.J., Buehler, E.C., Legrice, Y.M., Shroder, R.E., Parsons, G.N., Wang, C., Lucovsky, G., and Boyce, J.B., J. Non-Crys. Sol. 114, 813, (1989).Google Scholar
8 Tzolov, M., Finger, F., Carius, R., and Hapke, P., J. Appl. Phys. 81 (11), 73767385, (1997).Google Scholar
9 Bulitka, N.J., Leslie, J.D., and Ord, J.L., J. Electrochem. Soc., 139 (10), 28952899, (1992).Google Scholar
10 Wronski, Christopher R. and Daniel, Ronald E., Phys. Rev. B, 23(2) 794804, (1981); B. Abeles, G.D. Cody, D. Morel, and T. Tiedje, Proc. Fourteenth Photovoltaic Specialists Conf. San Diego, p.1057, (IEEE, New York, 1980).Google Scholar
11 Vanecek, M., Kocka, J., Sipek, E. and Triska, A., J. Non-Crys. Sol. 114, 447, (1989).Google Scholar
12 Adriaenssens, G.J., Baranovskii, S.D., Fuhs, W., Jansen, J., and Oktu, O., Phys. Rev. B, 51(15), 96619667, (1995).Google Scholar
13 Chen, Xing and Tai, Chen-Yu, Phys. Rev. B 40 (14), 96529660, (1989).Google Scholar
14 Orenstein, J. and Kastner, M.A., Phys. Rev. Lett. 46, 1421 (1981).Google Scholar
15 Finger, F., Hapke, P., Luysberg, M., and Wagner, H., Appl. Phys. Lett. 65, 2588, (1994).Google Scholar
16 Balanis, Constantine A., Theory, Antenna, analysis and Design, (Harper and Row publishers, New York, 1982), Chapters 4 and 8.Google Scholar
17 Yarasi, Sripathi and Manku, Tajinder (to publish in IEEE. Journal/Proc.).Google Scholar