Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-06T01:17:16.022Z Has data issue: false hasContentIssue false

Delta-doped AlGaN/GaN Heterostructure Field-Effect Transistors with Incorporation of AlN Epilayers

Published online by Cambridge University Press:  01 February 2011

Z. Y. Fan
Affiliation:
Department of Physics, Kansas State University, Manhattan, Kansas 66506–2601, USA
M. L. Nakarmi
Affiliation:
Department of Physics, Kansas State University, Manhattan, Kansas 66506–2601, USA
J. Y. Lin
Affiliation:
Department of Physics, Kansas State University, Manhattan, Kansas 66506–2601, USA
H. X. Jiang*
Affiliation:
Department of Physics, Kansas State University, Manhattan, Kansas 66506–2601, USA
*
a) Electronic mail: jiang@phys.ksu.edu
Get access

Abstratc

The simulation and experiment results of delta-doped AlGaN/GaN heterostructure field-effect transistors (HFETs) with the incorporation of highly-resistive AlN epilayer are reported. The high quality AlN epilayer is used as the dislocation filter for the HFET structure growth, and the high resistivity of AlN also removes the parasitic conduction related with the GaN bulk buffer. Delta doping can reduce gate leakage, further more, our simulation and growth results demonstrate that delta-doping in the barrier is more effective than uniform doping scheme to increase the sheet electron density. The influence of spacer layer thickness on the electron mobility and sheet electron density is also presented. The DC characterization of the fabricated devices shows our structure has a very high performance with a maximum current ∼ 1 A/mm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Chow, T. P. and Tyagi, R., IEEE Electron Devices 41, 1481 (1994).Google Scholar
2. Asif Khan, M., Chen, Q., Yang, J. W., Shur, M. S., Dermott, B. T., and Higgins, J. A., IEEE Electron Device Lett. 17, 325 (1996).Google Scholar
3. Keller, S., Wu, Y. F., Parish, G., Ziang, N., Xu, J. J., Keller, B. P., Denbarra, s. P., and Mishra, U. K., IEEE Electron Device Lett. 48, 552 (2001).Google Scholar
4. Tilak, V., Green, B., Kaper, V., Kim, H., Prunty, T., Smart, J., Shealy, J., and Eastman, L., IEEE Electron Device Lett. 22, 504 (2001).Google Scholar
5. Lee, C., Wang, H., Yang, J., Witkowski, L., Muir, M., Khan, M. A., and Saunier, P., Electron Lett. 38, 924 (2002).Google Scholar
6. Asif Khan, M., Hu, X., Tarakji, A., Simin, G., Yang, J., Gaska, R., and Shur, M. S., Appl. Phys. Lett. 77, 1339 (2000).Google Scholar
7. Fan, Z. Y., Li, J., Lin, J. Y., and Jiang, H. X., Appl. Phys. Lett. 81, 4649 (2002).Google Scholar
8. Bougrioua, Z., Moerman, I., Nistor, L., Van Daele, B., Monroy, E., Palacios, T., Calle, F., and Leroux, M., Phys. Stat. Sol. (a) 195, 93 (2003).Google Scholar
9. Tang, H., Webb, J. B., Bardwell, J. A., Raymond, S., Salzman, J., and Uzan-Saguy, C., Appl. Phys. Lett. 78, 757 (2001).Google Scholar
10. Tan, I.-H., Snider, G.L., and Hu, E.L., J. of Appl. Phys. 68, 4071 (1990).Google Scholar
12. Ambacher, O., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., Murphy, M., Schaff, W. J., and Eastman, L. F., J. Appl. Phys. 85, 3222 (1999).Google Scholar
14. Ambacher, O., Majewski, J., Miskys, C., Link, A., Hermann, M., Eickhoff, M., Stutzmann, M., Bernardini, F., Fiorentini, V., Tilak, V., Schaff, B., and Eastman, L. F., J. Phys.: Condens. Matter 14, 3399 (2002).Google Scholar