Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T18:40:47.035Z Has data issue: false hasContentIssue false

Degradation of Photoluminescence Efficiency in GaAs Under Low Intensity Laser Irradiation

Published online by Cambridge University Press:  21 February 2011

M. Yasin
Affiliation:
Center for High Technology Materials, University of New Mexico, Albuquerque, NM 87131
A. Raja
Affiliation:
Center for High Technology Materials, University of New Mexico, Albuquerque, NM 87131
Steven R. J. Brueck
Affiliation:
Center for High Technology Materials, University of New Mexico, Albuquerque, NM 87131
Marek Osinski
Affiliation:
Center for High Technology Materials, University of New Mexico, Albuquerque, NM 87131
John G. Mclnerney
Affiliation:
Center for High Technology Materials, University of New Mexico, Albuquerque, NM 87131
Get access

Abstract

We report temporal measurements of bandgap photoluminescence (PL) from GaAs surfaces under low-intensity CW laser excitation. We have observed slow PL degradation in n-type, p-type and semi-insulating (Cr-doped and LEC-grown) samples, and have fit the data to a simple power law. Calculations indicate a significant contribution from the bulk material, possibly via recombination-enhanced generation or migration of non-radiative centers. The effectiveness of various methods of surface treatment (photowashing, deposition of epitaxial AlGaAs, spin-coating with organic and inorganic sulfide films) has been assessed. One specific technique, involving coating with sodium sulfide, is effective in enhancing the PL efficiency and suppressing the degradation, but these effects are not permanent.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Offsey, I. S. D., Woodall, J. M., Warren, A. C., Kirchner, P. D., Chappell, T. I., and Pettit, G. D., Appl. Phys. Lett. 48, 415 (1986).Google Scholar
2. Ives, N. A., Stupian, G. S., and Leung, M. S., Appl. Phys. Lett. 50, 256 (1987);Google Scholar
3. Beck, S. M. and Wessel, J. E., Appl. Phys. Lett., 50, 149 (1987).Google Scholar
4. Sawada, T., Hasegawa, H., and Ohno, H., Jpn. J. Appl. Phys. 26, L1871 (1987).Google Scholar
5. Suzuki, T. and Ogawa, M., Appl. Phys. Lett. 34, 473 (1977).Google Scholar
6. Haegel, N. M. and Winnacker, A., Appl. Phys. A 42, 233 (1987).CrossRefGoogle Scholar
7. Guidotti, D., Hasan, E., Hovel, H-J, and Albert, M., Appl. Phys. Lett., 50, 912 (1987).CrossRefGoogle Scholar
8. Ogawa, J., Tamamura, K., Akimoto, K., and Mori, Y., Appl. Phys. Lett. 51, 1949 (1987).CrossRefGoogle Scholar
9. Hayashi, I., Jpn. J. Appl. Phys., 19, Supplement 19–1, 23 (1979).Google Scholar
10. Yablonovitch, E., Sandroff, C. J., Bhat, R., and Gmitter, T., Appl. Phys. Lett., 51, 439 (1987).Google Scholar
11. Hsu, J. K. and Lau, K. M., J. Appl. Phys., 63, 962 (1987).CrossRefGoogle Scholar
12. Raja, M. Y. A., Brueck, S. R. J., Osinski, M., and Mclnerney, J., Appl. Phys. Lett., 52, 625 (1988).Google Scholar
13. Petroff, P. M., Weisbuch, C., Dingle, R., Gossard, A. C. and Wiegmann, W., J. Vac. Sci. Technol., 19, 57 (1987).Google Scholar
14. Lang, D. V. and Kimerling, L. C., Phys. Rev. Lett., 31, 489 (1974).CrossRefGoogle Scholar
15. Maeda, K., Sato, M., Kubo, A., and Takeuchi, S., J. Appl. Phys, 54, 161 (1983).Google Scholar
16. Sibille, A., Phys. Rev. B 35, 3929 (1987).CrossRefGoogle Scholar
17. Hayashi, I., J. Phys. Soc. Jpn. Suppl. A 41, 57 (1980).Google Scholar
18. Dow, J. and Allen, R. E., Appl. Phys. Lett. 41, 672 (1982).Google Scholar
19. Lee, H. H. and Figueroa, L., J. Electrochem. Soc., 135, 496 (1988).Google Scholar
20. Watanabe, K., Hashiba, M., Hirahota, Y., Nishino, M., and Yamashina, T.; Thin Solid Films 56, 63 (1979).Google Scholar