Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-17T13:19:27.112Z Has data issue: false hasContentIssue false

Degradation Behavior of Optoelectronic Devices

Published online by Cambridge University Press:  15 February 2011

Junji Matsui*
Affiliation:
Fundamental Research Laboratories, Nippon Electric Co., Ltd., Miyazaki Yonchome, Miyamae-Ku, Kawasaki, 213, Japan
Get access

Abstract

Various degradation modes and features of crystalline defects associated with the degradation observed both in GaA1As/GaAs and InGaAsP/InP double heterostructure light emitting sources (LED's and Lasers) are reviewed, noticing similarities and differencies between those two material systems. Non-existence of rapid degradation in the quaternary caused by DLD formation (dislocation motion) will be discussed in terms of atomic rearrangements arouna the dislocation core.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For referring a lot of papers on lasers and LED's published until 1977,see, for example, Kressel, H. and Butler, J.K., Semiconductor Lasers and Heterojunction LEDs (Academic Press, New York, 1979) orGoogle Scholar
Casey, H.C. Jr. and Panish, M.B., Heterostructure Lasers (Academic Press, New York, 1978).Google Scholar
2. Petroff, P. and Hartman, R.L., Appl. Phys. Lett. 23, 469 (1973).Google Scholar
3. Ito, R. et al. , IEEE J. Quantum Electronics QE–11, 551 (1975).Google Scholar
4. Yonezu, H. et al. , Appl. Phys. Lett. 24, 18 (1974).Google Scholar
5. Ishida, K. and Kamejima, T., J. Electronic Materials 8, 57 (1979).Google Scholar
6. Hutchinson, P.W. et al. , Appl. Phys. Lett. 26, 250 (1975).Google Scholar
7. Hutchinson, P.W. and Dobson, P.S., Phil. Mag. 32, 745 (1975).Google Scholar
8. Ishida, K. et al. , Appl. Phys. Lett. 40, 16 (1982).Google Scholar
9. Mahajan, S. et al. , Appl. Phys. Lett. 34, 717 (1979).Google Scholar
10. Hayashi, I., Proc. 15th Int'l. Conf. Physics of semiconductors Kyoto 1980.Google Scholar
11. Lang, D.V., J. Appl. Phys. 45, 3023 (1974).CrossRefGoogle Scholar
12. Uji, T. et al. , Appl. Phys. Lett. 36, 655 (1980).CrossRefGoogle Scholar
13. Kondo, K. et al. , Jpn. J. Appl. Phys. 19 Suppl. 437 (1979).Google Scholar
14. Wakefield, B., J. Appl. Phys. 50, 7914 (1979).Google Scholar
15. Ueda, O. et al. , J. Appl. Phys. 53, 2991 (1982).Google Scholar
16. Dobson, P.S. et al. , Proc. Int'l. Conf. of GaAs and Related Compounds, pp.419, 1977.Google Scholar
17. Yuasa, T. et al. , Appl. Phys. Lett. 32, 119 (1978).Google Scholar
18. Kamejima, T. and Yonezu, H., Jpn. J. Appl. Phys. 19 Suppl. 425 (1979).Google Scholar
19. Temkin, H. et al. , Appl. Phys. Lett. 40, 562 (1982).Google Scholar
20. Spicer, W.E. et al. , J. Vac. Sci. Technol. 16, 1422 (1979).Google Scholar
21. Philips, J.C., Bonds and Bands in Semiconductors (Academic Press, NewYork, 1973).Google Scholar
22. Kirkby, P.A., IEEE J. Quantum Electronics QE–11, 562 (1975).Google Scholar
23. Seki, M. et al. , Appl. Phys. Lett. 40, 115 (1982).Google Scholar