Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-20T17:29:38.122Z Has data issue: false hasContentIssue false

Degradation and Recovery of Boron Doped Strained Silicon Germanium Layers After 1-MeV Electron Irradiation

Published online by Cambridge University Press:  25 February 2011

H. Ohyama
Affiliation:
Interuniversity Micro-Electronics Centre (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium.
J. Vanhellemont
Affiliation:
Interuniversity Micro-Electronics Centre (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium.
M.-A. Trauwaert
Affiliation:
Interuniversity Micro-Electronics Centre (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium.
J. Poortmans
Affiliation:
Interuniversity Micro-Electronics Centre (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium.
M. Caymax
Affiliation:
Interuniversity Micro-Electronics Centre (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium.
P. Clauws
Affiliation:
RUG, Krijgslaan 281 S1, B-9000 Gent, Belgium.
Get access

Abstract

1007×100 μm2 n+− Si/p-Si1−x Gex diodes fabricated on conventional p-type Si substrates are irradiated at room temperature with 1-MeV electrons with fluences from 1.0×1014 to 1.0×1015 e/cm2 in a high voltage transmission electron microscope. The boron concentration and germanium fraction of the Si1−x Gex epitaxial layer used for the diodes in this study are 5×1017 cm−3 and x = 0.12, respectively. The degradation of diodes is investigated by means of current/voltage and capacitance/voltage measurements. The characteristics of the electrically active defects induced in the Si1−x Gex epitaxial layer by irradiation are also examined by using deep level transient spectroscopy and capacitance/temperature measurements. The degradation of the diode performance and the presence of deep levels are investigated as a function of electron fluence. In order to examine the recovery process, an isochronal thermal anneal is performed in the temperature range between 100 and 400°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cogarrity, J. M., IEEE. Trans. Nucl. Sci. NS–27, 1739 (1980).Google Scholar
2. Johnston, A. H., IEEE Trans. Nucl. Sci. NS–23, 1427 (1984).Google Scholar
3. Ohyama, H. and Nemoto, K., Phys. Stat. Sol. (a) 107, 429 (1988).Google Scholar
4. People, R., IEEE J. of Quantum Electronics QE–22, 1696 (1986).Google Scholar
5. Gell, M., Appl. Phys. Lett. 55, 484 (1989).Google Scholar
6. Patton, G. L., et al., IEEE Elec. Dev. Lett. EDL–11, 171 (1990).Google Scholar
7. Ohyama, H. and Nemoto, K., in “Defect Control in Semiconductors”, ed. Sumino, K., Elsevier Science Publishers B.V. (North-Holland), 645 (1990).Google Scholar
8. Vanhellemont, J., Trauwaert, M.-A., Poortmans, J., Caymax, M. and Clauws, P., Thin Solid Films 95, 517 (1992).Google Scholar
9. Poortmans, J., Jain, S.C., Caymax, M., Nijs, J., Mertens, R. and Van Overstraeten, R., Microelectronic Engineering 19, 443 (1992).Google Scholar
10. Bertrand, P. A., Fleischauer, P. D. and Song, Y., J. Appl. Phys. 54, 1100 (1983).Google Scholar
11. Vanhellemont, J., Trauwaert, M.-A., Poortmans, J., Caymax, M. and Clauws, P., Appl. Phys. Lett., in press (1993).Google Scholar