Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-27T07:14:30.743Z Has data issue: false hasContentIssue false

Deformation behavior and strain rate sensitivity of nanostructured materials at moderate temperatures

Published online by Cambridge University Press:  01 February 2011

Cécilie Duhamel
Affiliation:
Centre d'Etude de Chimie Métallurgique (CECM-CNRS, UPR 2801) 15 rue Georges Urbain, 94407 Vitry-sur-Seine, France.
Sandrine Guérin
Affiliation:
Centre d'Etude de Chimie Métallurgique (CECM-CNRS, UPR 2801) 15 rue Georges Urbain, 94407 Vitry-sur-Seine, France.
Martin Hÿtch
Affiliation:
Centre d'Etude de Chimie Métallurgique (CECM-CNRS, UPR 2801) 15 rue Georges Urbain, 94407 Vitry-sur-Seine, France.
Yannick Champion
Affiliation:
Centre d'Etude de Chimie Métallurgique (CECM-CNRS, UPR 2801) 15 rue Georges Urbain, 94407 Vitry-sur-Seine, France.
Get access

Abstract

Strain-rate jump tests in compression are carried out on nanostructured copper (grain size = 90 nm) at moderate temperatures (353K - 393K). Strain-rate sensitivity m is measured as a function of temperature, T, and strain rate, έ. Increasing temperature or decreasing strain rate induces an increase in the strain-rate sensitivity. For (έ, T) = (1×10-5 s-1, 393K), m is equal to 0.17 which is the highest value reported for nanocrystalline copper. These results of enhanced m are encouraging in terms of gain in ductility. The measurements emphasize the existence of a thermally activated mechanism different from the normal rate-controlling process observed for microcrystalline fcc metals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Koch, C.C. and Malow, T.R., J. Metastable Nanocryst Mater, 2-6, 565, (1999)Google Scholar
2 Kim, H.S. and Estrin, Y., Appl Phys Lett, 79, 4115, (2001)Google Scholar
3 Hart, E.W., Acta Metall, 15, 351, (1967)Google Scholar
4 Champion, Y., Langlois, C., Guérin-Mailly, S., Langlois, P., Bonnentien, J.L., Hÿtch, M.J., Science, 300, (2003)Google Scholar
5 Langlois, C., Hÿtch, M.J., Leroux, C., Guérin, S., Langlois, P., Champion, Y., submitted to Scr MaterGoogle Scholar
6 Champion, Y., J. Bigot, Mater Sci Eng A 217/218, 58, (1996)Google Scholar
7 Langlois, C., Hÿtch, M.J., Langlois, P., Lartigue-Korinek, S., Champion, Y., submitted to Metall. Trans.Google Scholar
8 Wang, Y.M. and Ma, E., Appl Phys Lett, 85, 1, (2004)Google Scholar
9 Wang, Y.M. and Ma, E., Appl Phys Lett, 83, 3165, (2003)Google Scholar
10 Li, Y.J., Zeng, X.H., Blum, W., Acta Mater, 52, 5009, (2004)Google Scholar
11 Pilling, J. and Ridley, N., Superplasticity in crystalline solids, The Institute of Metals (The Camelot Press. 1989) p. 6 Google Scholar
12 Wei, Q., Cheng, S., Ramesh, K.T., Ma, E., Mater Sci Eng A381, 71, (2004)Google Scholar
13 Torre, F.H. Dalla, Pereloma, E.V., Davies, C.H., Scr Mater, 51, 367, (2004)Google Scholar
14 Wang, Y.M. and Ma, E., Acta Mater, 52(6), 1699, (2004)Google Scholar
15 Cheng, S., Ma, E., Wang, Y.M., Kecskes, L.J., Youssef, K.M., Koch, C.C., Trociewitz, U.P., Han, K., Acta Mater, 53, 1521, (2005)Google Scholar
16 Lu, L., Schwaiger, R., Shan, Z.W., Dao, M., Lu, K., Suresh, S., Acta Mater, in press, (2005)Google Scholar
17 Woodford, D.A., Trans ASM, 62, 291, (1969)Google Scholar
18 Champion, Y., Langlois, C., Guérin, S., Lartigue-Korinek, S., Langlois, P. and Hÿtch, M.J., Mater Sc For, 482, 71, (2005)Google Scholar
19 He, G., Eckert, J., Löser, W., Schultz, L., Nature Mater., 33, 2, (2003)Google Scholar