Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-08T02:20:58.307Z Has data issue: false hasContentIssue false

Deformation Behavior and Dislocation Mechanisms in Tial Alloys

Published online by Cambridge University Press:  22 February 2011

S. Sriram
Affiliation:
Dept. of Materials Science and Engineering, University of Cincinnati, Cincinnati, OH 45221 Now at SYSTRAN Corporation, Dayton, OH 45432
Vijay K. Vasudevan
Affiliation:
Dept. of Materials Science and Engineering, University of Cincinnati, Cincinnati, OH 45221
Dennis M. Dimiduk
Affiliation:
Wright Laboratory, Materials Directorate, Wright-Patterson AFB, Dayton, OH 45433-7817
Get access

Abstract

Polycrystalline Ti-50 and Ti-52A1 (in at.%) alloys, with large grain sizes (50Al-300μm, 52Al-500μm) and containing low (∼250 wt.ppm) levels of oxygen were deformed under compression over a wide temperature range (77-1173°K). The 0.2% proof stress-temperature profiles comprise of three distinct regimes: Regime I (between 77-∼600°K), regime II (between ∼600-1073°K), and regime III (above 1073°K). Deformation temperature influences the types of dislocations present, the nature of superdislocation dissociations, and the morphological characteristics of both ordinary and superdislocations. Collectively, experiment and theory suggest that the flow properties at low temperatures (regime I) are controlled by lattice friction, whereas at higher temperatures (regime II) the properties are dislocation obstacle controlled.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kawabata, T., Kanai, T. and Izumi, O., Acta Metall., 33 1355 (1985).Google Scholar
2. Kawabata, T., Abumiya, T., Kanai, T. and Izumi, O., Acta Metall. Mater., 38 1381 (1990).Google Scholar
3. Stucke, M. A., Dimiduk, D. M. and Hazzledine, P. M., MRS Symp.Proc., 288 471 (1993).Google Scholar
4. Bird, N., Taylor, G. and Sun, Y.Q., These Proceedings.Google Scholar
5. Rao, P. Prasad and Tangri, Kris, Mat. Sci. Engg. A 132, 49 (1991).Google Scholar
6. Sriram, S., Ph.D. Thesis, University of Cincinnati (1994).Google Scholar
7. Phan-Courson, I., Ph.D. Thesis, University of Paris (1993).Google Scholar
8. Hug, G., Loiseau, A. and Veyssiere, P. Phil. Mag. A., 57, 499 (1988).Google Scholar
9. Hug, G., Ph.D Thesis, University of Paris (1988).Google Scholar
10. Court, S. A., Vasudevan, V. K. and Fraser, H. L., Phil. Mag. A, 61, 141 (1990).Google Scholar
11. Huang, S. C. and Hall, E., Metall. Trans., 22A, 427 (1991).Google Scholar
12. Louchet, F. and Viguier, B., Scripta Metall. Mat., 31, 369 (1994).Google Scholar
13. Appel, F., Sparka, U. and Wagner, R., These Proceedings.Google Scholar
14. Viguier, B., Bonneville, J., Hemker, K. J., and Martin, J. L., These Proceedings.Google Scholar
15. Sriram, S., Vasudevan, V. K. and Dimiduk, D. M., MRS Symp.Proc., 213, 375 (1991).Google Scholar
16. Rao, S., Woodward, C., Simmons, J. P. and Dimiduk, D. M., These Proceedings.Google Scholar
17. Yamaguchi, M., Vitek, V. and Pope, D.P., Phil. Mag. A, 43, 1027 (1981).Google Scholar
18. Yamaguchi, M., Paidar, V., Pope, D.P. and Vitek, V., Phil. Mag. A, 45, 867 (1982).Google Scholar
19. Wee, D. M., Pope, D. P. and Vitek, V., Acta Metall., 32, 829 (1984).Google Scholar
20. Simmons, J. P., Rao, S. I. and Dimiduk, D. M., MRS Svmp.Proc., 288, 335 (1993).Google Scholar