Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-21T07:12:59.942Z Has data issue: false hasContentIssue false

Defects Near the Y2BaCuO5/YBa2Cu3O7−x Interface and their Effect on Flux-Pinning in Melt-Processed and Quench-Melt-Growth Processed YBa2Cu3O7−x

Published online by Cambridge University Press:  26 February 2011

Z. L. Wang
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831–6376;
A. Goyal
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831–6376;
D. M. Kroeger
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831–6376;
T. Armstrong
Affiliation:
Allied-Signal Aerospace Co., AiResearch Los Angeles Division, 2525 West 190th St., P. O. Box 2960, Torrance, CA 90509.
Get access

Abstract

A detailed examination of the Y2BaCuO5 (211)/ YBa2Cu3O7−x (123) interface in several melt-processed 123 samples prepared using different methods was undertaken using analytical electron microscopy. It is found that there exists a significant increase in the a-b planar stacking fault density in 123, near the 211/123 interface. When viewed along [001], these faults appear as disks with diameter from a few to 30 nm and are bounded by dislocation loops. Most stacking faults are confined to the (001) basal plane. The size and density of defects around the 211 particles suggest that these defects could act as effective flux-pinning sites and may explain the observations of increased Jc with increasing volume fraction of 211 and a maximum in Jc when the applied field parallel to the c-axis.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jin, S., Tiefel, R. C., Sherwood, R. C., van Dover, R. V., Davis, M. E., Kammlott, G. W., and Fastnacht, R. A., Phys. Rev. B 37, 7850 (1988).Google Scholar
2. Murakami, M., Morita, M., Doi, K., and Miyamoto, K., Jpn. J. Appl. Phys. 28, 1189 (1989).Google Scholar
3. Goyal, A., Funkenbusch, P. D., Kroeger, D. M. and Burns, S. J., Physica C, 182, 203 (1991).Google Scholar
4. Alexander, K. B., Goyal, A., Kroeger, D. M., Selvamanickam, V., and Salama, K., Phys. Rev. B45, 5622 (1992).Google Scholar
5. Goyal, A., Alexander, K. B., Kroeger, D. M., Funkenbusch, P. D., and Burns, S. J., submitted to Physica C (1992).Google Scholar
6. Goyal, A., Oliver, W. C., Funkenbusch, P. D., Kroeger, D. M. and Burns, S. J., Physica C, 183, 221 (1991).Google Scholar
7. Yamaguchi, K., Murakami, M., Fujimoto, H., Gotoh, S., Oyama, T., Shiohara, Y., Koshizuka, N., and Tanaka, S., J. Mat. Res., 6, 1404 (1991).Google Scholar
8. Murakami, M., Gotoh, S., Koshizuka, N., Tanaka, S., Matsuhita, T., Kanube, S. and Kitazawa, K., Cryogenics, 30, 390 (1990).Google Scholar
9. Jin, S., Tiefel, T. H. and Kamlott, G. W., Appl. Phys. Lett., 59, 540 (1991).Google Scholar
10. McGinn, P., Zhu, N., Chen, W., Sengupta, S. and Li, T., Physica C, 176, 203 (1991).Google Scholar
11. Wang, Z. L., Goyal, A. and Kroeger, D. M., Phys. Rev. B, submitted (1992).Google Scholar
12. Goyal, A. et al., Manuscript in preperation, (1992).Google Scholar
13. Anderson, P. W., Phys. Rev. Lett, 9, 309 (1962).Google Scholar
14. Campbell, A. M. and Evetts, J. E., Adv. Phys., 21, 199 (1972).Google Scholar
15. Ossandon, J. G., Ph. D Dissertation, The University of Tennessee, Knoxville (1991).Google Scholar
16. Salama, K., Lee, D. F. and Chaud, X., Published in the Proceedings of the Fourth International Symposium on Superconductivity, October 14–19, Tokyo, Japan (1991).Google Scholar