Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-11T12:14:37.911Z Has data issue: false hasContentIssue false

Defects at the Interface of GaAsxP1−x/Gap Grown by Vapor Phase Epitaxy

Published online by Cambridge University Press:  25 February 2011

Seiji Takeda
Affiliation:
Physics Department, College of General Education, Osaka University, Toyonaka, Osaka 560, Japan
M. Hirata
Affiliation:
Physics Department, College of General Education, Osaka University, Toyonaka, Osaka 560, Japan
H. Fujita
Affiliation:
Research Center, Mitubishi Kasei Co., Ibaraki 300–12, Japan
T. Sato
Affiliation:
Research Center, Mitubishi Kasei Co., Ibaraki 300–12, Japan
K. Fujii
Affiliation:
Mitsubishi Monsanto Chemical Co., Ibaraki 300–12, Japan
Get access

Abstract

Defects and microstructures in a ternary GaAsxP−x compound have been studied by transmission electron microscopy. The compound was grown on a (100) GaP substrate by vapor phase epitaxial. Crystal growth striation contrast was detected in a TEM image. This contrast was explained by local compositional variation of As and P. The distribution of misfit dislocations in the interface region was also studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tietzen, J. J. and Amick, J. A., J. Electrochemical Soc. 113, 724 (1966).CrossRefGoogle Scholar
2. Abrahams, M.S., Weisberg, L.R., Buiocchi, C.J., J. Blanc;J. Materials Science 4, 223 (1969).CrossRefGoogle Scholar
3. Abrahams, M. S. and Buiocchi, C.J., J. Appl. Phys. 45, 3315 (1974).CrossRefGoogle Scholar
4. Olsen, H., Abrahams, M.S., Buiocchi, C.J. and Zamerowski, T.J., J.Appl. Phys. 46, 1643 (1975).CrossRefGoogle Scholar
5. Olsen, G. H., J. Crystal Growth 31, 223 (1975).CrossRefGoogle Scholar
6. Stringfellow, G. B. and Greene, P. E., J. Appl. Phys. 40, 502 (1969).CrossRefGoogle Scholar
7. Kishino, S., Ogirima, M. and Kurata, K., J. Electrochem. Soc. 119, 617 (1972).CrossRefGoogle Scholar
8 Dupuy, M. and Lafeuille, D., J Crystal Growth 31, 244 (1975).CrossRefGoogle Scholar
9. Woodbridge, K., Gowers, J.P. and Joyce, B.A., J. Crystal Growth 60, 21 (1982).CrossRefGoogle Scholar
10. Petroff, P.M., J. Vac. Sci. Technol. 14, 973 (1977).CrossRefGoogle Scholar
11. Ourmazd, A., Tsang, W. T., Rentscher, J. A. and Taylor, D. W., Appl. Phys. Lett. 50, 1417 (1987).CrossRefGoogle Scholar
12. Ichinose, H., Ishida, Y., Furuta, T. and Sakaki, H., J. Electron Microsc. 36, 82 (1987).Google Scholar
13. Hirsch, P.B., Howie, A., Nicholson, R. B., Pashley, D. W. and Whelan, M. J., Electron Microscopy of Thin Crystal, (Butterworths, London, 1965).Google Scholar
14. Straumanis, M. E., Krumme, J. P. and Rubenstein, M., J. Electrochem. Soc. 114, 640 (1967).CrossRefGoogle Scholar
15. Kakibayashi, H., Nagata, F. and Ono, Y.; Jpn. J. Appl. Phys. 26, 770 (1987).CrossRefGoogle Scholar