Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-17T14:32:31.011Z Has data issue: false hasContentIssue false

Defect-Related Photoluminescence of a-Si:H

Published online by Cambridge University Press:  16 February 2011

Isabell Ulber
Affiliation:
Fachbereich Physik und Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-UniversitäT Marburg, Renthof 5, D-35032 Marburg, Germany
Axel Barth
Affiliation:
Fachbereich Physik und Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-UniversitäT Marburg, Renthof 5, D-35032 Marburg, Germany
Walther Fuhs
Affiliation:
Fachbereich Physik und Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-UniversitäT Marburg, Renthof 5, D-35032 Marburg, Germany
Helmut Mell
Affiliation:
Fachbereich Physik und Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-UniversitäT Marburg, Renthof 5, D-35032 Marburg, Germany
Get access

Abstract

The defect-related photoluminescence (0.8–0.9eV) of a-Si:H is studied as a function of the defect density ND and the temperature using subgap excitation of Ex= 1.16eV. Electron bombardment, light exposure and phosphorus doping were employed to create defects. The defect density ND was infered from CPM- and PDS-spectroscopy. We conclude from the measured density-of-states distributions of doped films that the radiative process is tunneling of bandtail carriers (Majority carriers) into the defect states. The dependence of the emission intensity on ND suggests that only a subgroup of the defects acts as radiative center. We propose that the local structure of the defect determines whether it acts as radiative or nonradiative center.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Street, R. A., Advances in Physics 30, 596 (1981)CrossRefGoogle Scholar
[2] Voget-Grote, U., Kümmerle, W., Fischer, R., Stuke, J., Phil. Mag. B 41, 127 (1980)CrossRefGoogle Scholar
[3] Street, R. A., Biegelsen, D. K., Weisfield, R. L., Phys. Rev. B 30, 5861 (1984)CrossRefGoogle Scholar
[4] Wilson, B. A., Sergent, A. M., Wecht, K. W., Williams, A. J., Kerwin, T. P., Taylor, C. M., Harbison, J. P., Phys. Rev. B 30, 3320 (1984)CrossRefGoogle Scholar
[5] Morigaki, K., Yoshida, M., Phil. Mag. B 52, 289 (1985)CrossRefGoogle Scholar
[6] Saleh, R., Ulber, I., Fuhs, W., MRS Coni Proc. 297, 219 (1993)CrossRefGoogle Scholar
[7] Saleh, R., Ulber, I., Fuhs, W., Mell, H., J. Non-Cryst. Solids 165–166, 563 (1993)CrossRefGoogle Scholar
[8] Pierz, K., Fuhs, W., Mell, H., Phil. Mag. B. 63, 123 (1991)CrossRefGoogle Scholar
[9] Kočka, J., J. Non-Cryst. Solids 90, 91 (1987)CrossRefGoogle Scholar
[10] Street, R. A., Winer, K., Phys. Rev. B 40, 6236 (1989)CrossRefGoogle Scholar
[11] Beyer, W., Wagner, H., J. Non-Cryst. Solids 59–60, 161 (1983)CrossRefGoogle Scholar
[12] Nashishibi, T. S., Austin, J. G., Searle, T. M., Proc. 7th Int. Conf. on Amorphous and Liquid Semiconductors (Edinburgh 1977) p. 392.Google Scholar
[13] Lips, K., Schütte, S., Fuhs, W., Phil. Mag. 65, 945 (1992)CrossRefGoogle Scholar