Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-18T00:57:30.598Z Has data issue: false hasContentIssue false

Defective Buckyballs: Alternative Structural Isomers of C60

Published online by Cambridge University Press:  25 February 2011

Krishnan Raghavachari
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Celeste M. Rohlfing
Affiliation:
Sandia National Laboratories, Livermore, CA 94551–0969
Get access

Abstract

Alternative isomerie structures of C60 spheroids have been investigated using semiempirical and ab initio quantum chemical techniques. Unlike the icosahedral ground state, these isomers are characterized by the presence of pentagonal rings adjacent to each other. The lowest energy alternative isomer of C60 has two such pairs of edge-sharing pentagons and lies = 2 eV higher in energy than the ground state. Isomers containing three and four pairs of adjacent pentagons have also been studied in detail. Overall, the energy contributions of these adjacent pentagonal defects are additive, with each defect making the structure less stable by = 1 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Krato, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., and Smalley, R. E., Nature 318, 162 (1985).Google Scholar
2. Krätschmer, W., Lamb, L. D., Fostiropoulos, K., and Huffman, D. R., Nature 347, 354 (1990).Google Scholar
3. Newton, M. D. and Stanton, R. E., J. Am. Chem. Soc. 108, 2469 (1986).Google Scholar
4. Luthi, H. P. and Almlöf, J., Chem. Phys. Lett. 135, 357 (1987).Google Scholar
5. Almlöf, J. and Luthi, H. P., ACS symp. series 353, Supercomput. Res. Chem. Chem. Eng. 1987, 35.Google Scholar
6. Haufler, R. E., Chai, Y., Chibante, L. P. F., Conceicao, J., Jin, C., Wang, L.-S., Maruyama, S., Smalley, R. E., Mat. Res. Soc. Symp. Proc. 1991, 206.Google Scholar
7. Stone, A. J. and Wales, D. J., Chem. Phys. Lett. 128, 501 (1986).Google Scholar
8. Haymet, A. D. J., J. Am. Chem. Soc. 108, 319 (1986).Google Scholar
9. Fowler, P. W. and Woolrich, J., Chem. Phys. Lett. 127, 78 (1986).Google Scholar
10. Schmalz, T. G., Seitz, W. A., Klein, D. J., and Hite, G. E., Chem. Phys. Lett. 130, 203 (1986).Google Scholar
11. McKee, M. L. and Herndon, W. C., J. Mol. Struc. (Theochem) 153, 75 (1987).Google Scholar
12. Schmalz, T. G., Seitz, W. A., Klein, D. J., and Hite, G. E., J. Am. Chem. Soc. 110, 1113 (1988).Google Scholar
13. Bakowies, D. and Thiel, W., J. Am. Chem. Soc. 113, 3704 (1991).Google Scholar
14. Coulombeau, C. and Rassat, A., J. Chim. Phys. 88, 173 (1991).Google Scholar
15. Raghavachari, K. and Rohlfing, C. M., J. Phys. Chem. (in press).Google Scholar
16. Dewar, M. J. S. and Thiel, W., J. Am. Chem. Soc. 99, 4899 (1977).Google Scholar
17. Hehre, W. J., Radom, L., Schleyer, P. v. R., and Popie, J. A., Ab Initio Molecular Orbital Theory (John Wiley, New York, 1986).Google Scholar
18. All the calculations reported in this work were performed using Gaussian 90 Computer Program, Frisch, M. J., Head-Gordon, M., Trucks, G. W., Foresman, J. B., Schlegel, H. B., Raghavachari, K., Robb, M., Binkley, J. S., Gonzalez, C., Defrees, D. J., Fox, D. J., Whiteside, R. A., Seeger, R., Melius, C. F., Baker, J., Martin, R. L., Kahn, L. R., Stewart, J. J. P., Topiol, S., and Pople, J. A., Gaussian, Inc., Pittsburgh PA, 1990.Google Scholar
19. Haddon, R. C. and Scott, L. T., Pure Appl. Chem. 58, 137(1986).Google Scholar
20. Haddon, R. C., Brus, L. E., and Raghavachari, K., Chem. Phys. Lett. 125, 459 (1986).Google Scholar
Haddon, R. C., Brus, L. E., and Raghavachari, K., Chem. Phys. Lett. 131, 165 (1986).Google Scholar
21. Raghavachari, K. and Rohlfing, C. M., J. Phys. Chem. 95, 5768 (1991).Google Scholar
22. Haddon, R. C., J. Am. Chem. Soc. 112, 3385 (1990).Google Scholar