Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-13T16:28:00.983Z Has data issue: false hasContentIssue false

Defect Structure and Network Disorder in Boron Doped Amorphous Silicon

Published online by Cambridge University Press:  21 February 2011

M. B. Schubert
Affiliation:
Institut fur Physikalische Elektronik, Universitat Stuttgart, Pfaffenwaldring 47, 7000 Stuttgart 80, Germany
G. Schumm
Affiliation:
Institut fur Physikalische Elektronik, Universitat Stuttgart, Pfaffenwaldring 47, 7000 Stuttgart 80, Germany
E. Lotter
Affiliation:
Institut fur Physikalische Elektronik, Universitat Stuttgart, Pfaffenwaldring 47, 7000 Stuttgart 80, Germany
K. Eberhardt
Affiliation:
Institut fur Physikalische Elektronik, Universitat Stuttgart, Pfaffenwaldring 47, 7000 Stuttgart 80, Germany
G. H. Bauer
Affiliation:
Institut fur Physikalische Elektronik, Universitat Stuttgart, Pfaffenwaldring 47, 7000 Stuttgart 80, Germany
Get access

Abstract

A series of boron doped a-Si:H films have been characterized by PDS, FTIR, Raman, and SIMS in order to evaluate the effects of boron incorporation on structural properties and hydrogen bonding. Doping by B2H6 or B(CH3)3 does not significantly enhance the overall disorder of the silicon network showing up in the TO-like Raman halfwidth whereas remarkable changes in local, defect related structures are evident from PDS. An analysis of the data suggests two bands of defects in the pseudogap at low boron concentration and only one band for higher concentration. To account for Fermi level positions, shifts of the hole transport path well into the valence band tail upon doping must be invoked.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Street, R.A., Kakalios, J., Tsai, C.C., Hayes, T.M., Phys. Rev. B 35, 1316 (1987)CrossRefGoogle Scholar
[2] Schumm, G. and Bauer, G.H., Phil. Mag. B, in press (1991)Google Scholar
[3] Mohring, H.-D. et al., J. Non-Cryst. Sol. 97&98, 1415 (1987)CrossRefGoogle Scholar
[4] Boyce, J.B., Ready, S.E., Tsai, C.C., J. Non.-Cryst. Sol. 97&98, 345 (1987)CrossRefGoogle Scholar
[5] Schubert, M.B., Mohring, H.-D., Loiter, E., Bauer, G.H., 1989, IEEE Trans. Electron Devices 26, 2863 (1989)CrossRefGoogle Scholar
[6] Beeman, D., Tsu, R., Thorpe, M.F., Phys. Rev. B 32, 874 (1985)CrossRefGoogle Scholar
[7] Maley, N., Beeman, D., Lannin, J.S., Phys. Rev. B 38, 10611 (1988)CrossRefGoogle Scholar
[8] Lannin, J.S. in Semiconductors and Semimetals 21 B. ed. Pankove, J.I. (Orlando, Academic Press), 159, (1984)Google Scholar
[9] Fang, C.J. et al, J. Non-Cryst. Sol. 35&36, 255 (1980)CrossRefGoogle Scholar
[10] Maley, N. and Szafranek, I., Mat. Res. Soc. Symp. Proc. 122, 663 (1990)CrossRefGoogle Scholar
[11] Beyer, W., Herion, J., Wagner, H., J. Non-Cryst. Solids 114, 217 (1989)CrossRefGoogle Scholar
[12] Benferhat, R. and Drevillon, B., J. Non-Cryst. Sol. 97&98, 835 (1987)CrossRefGoogle Scholar
[13] Mahan, A.H., Raboisson, P., Tsu, R., Appl. Phys. Lett. 50, 335 (1987)CrossRefGoogle Scholar
[14] Cardona, M., Phys. Stat. Sol. B 118, 463 (1983)CrossRefGoogle Scholar
[15] Stutzmann, M., Jackson, W.B., Sol. State Comm. 62, 153 (1987)CrossRefGoogle Scholar
[16] Pierz, K., Fuhs, W., Mell, H., Phil. Mag. B 62, 123 (1991)CrossRefGoogle Scholar
[17] Stuke, J., J. Non-Cryst. Sol. 97&98, 1 (1985)Google Scholar