Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-24T00:20:07.771Z Has data issue: false hasContentIssue false

Defect States in Silicon Nitride

Published online by Cambridge University Press:  28 February 2011

John Robertson
Affiliation:
Central Electricity Research Labs., Leatherhead, Surrey, UK
Martin J. Powell
Affiliation:
Philips Research Labs., Redhill, Surrey, UK
Get access

Abstract

The energy levels of defect centers in amorphous silicon nitride have been calculated. The results are related to recent photoemission and light-induced electron spin resonancedata. The Si dangling bond is argued to be the memory trap in MNOS devices and to be responsible for the electron accumulation at interfaces with amorphous silicon and for the n-type chargetransfer doping of amorphous silicon-silicon nitride superlattices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chen, P.C.Y., IEEE Trans. ED–24, 584 (1977)CrossRefGoogle Scholar
2. Powell, M.J., Easton, B.C., Hill, O.F., App. Phys. Let. 38, 794 (1981)Google Scholar
3. Powell, M.J., in Materials Research Society Symposium Proceedings, Vol. 33, “Comparison of Thin Film Transistor and SOI Technologies”, eds. Lam, H.Y., Thompson, M.J. (North Holland, New York) (1984)Google Scholar
4. Powell, M.J., in Proc. 4th Int. Display Research Conf., Paris (1984)Google Scholar
5. Abeles, B., Tiedje, T., Phys. Rev. Let. 51, 2003 (1983)Google Scholar
6. Robertson, J., Powell, M.J., App. Phys. Let. 44, 415 (1984)Google Scholar
7. Bailey, R.S., Kapoor, V.J., J. Vac Sci. Technol. 20, 484 (1982)Google Scholar
8. Maeda, M., Arita, Y., J. App. Phys. 53, 6852 (1982)Google Scholar
9. Peercy, P.S., Stein, H.J., Doyle, B.L., Picraux, S.T., J. Electron Mater, 8, 11 (1979)Google Scholar
10. Karcher, R., Ley, L., Johnson, R.L., Phys. Rev. 8 30, 1896 (1984)Google Scholar
11. DiMaria, D.J., Arnett, P.C., App. Phys. Let. 26, 711 (1975)Google Scholar
12. Weinberg, Z.A., Pollak, R.A., App. Phys. Let. 27, 254 (1975)Google Scholar
13. Robertson, J., J. App. Phys. 54, 4490 (1983)CrossRefGoogle Scholar
14. Ley, L., Karcher, R., Johnson, R.L., Phys. Rev. Let. 53 710 (1984)Google Scholar
15. Arnett, P.C., Yun, B.H., App. Phys. Let. 26, 94 (1975)Google Scholar
16. Fujita, S., Tryoshima, H., Nishihara, M., Sasaki, A., J. Electron Mat, 11, 795 (1982)Google Scholar
17. Kapoor, V.J., Bailey, R.S., Stein, H.V., J. Vac. Sci. Technol A1, 600 (1983)CrossRefGoogle Scholar
18. Powell, M.J., App. Phys. Let., 43, 597 (1983)Google Scholar
19. Tiedje, T., Abeles, B., App. Phys. Let. 45, 179 (1984)Google Scholar
20. Lang, D.V., Cohen, J.D., Harbison, J.P., Phys. Rev. B 25, 5285 (1982)Google Scholar
21. Poindexter, E.H., Gerardi, G.J., Rueckel, M.E., Caplan, P.J., Johnson, N.M., Biegelsen, D.K., J. App. Phys. 56, 2844 (1984)Google Scholar
22. Dersch, H., Stuke, J., Beichler, J., Phys. Stat. Solidi, b105, 265 (1981)Google Scholar
23. Griscom, D.L., Friebele, E.J., Sigel, G.H., Solid State Commun., 15, 479 (1974)Google Scholar
24. Seager, C.H., Knapp, J.A., App. Phys. Let. 45, 1060 (1984)Google Scholar
25. Smith, G.J., Milne, W.I., Phil. Mag. B 47, 419 (1983)Google Scholar
26. Street, R.A., Phys. Rev. Let. 49, 1187 (1982)Google Scholar
27. Robertson, J., J. Phys. C 17, L349 (1984), Phys. Rev. B 31, 3817 (1985)Google Scholar
28. Robertson, J., Phys. Rev. B 28, 4647 (1983)Google Scholar
29. Shimizu, T., in “Japan Annual Reviews in Electronics, Computers and Telecommunications”, ed. Hamakawa, Y., (OHMSHA, Tokyo), 16, 21 (1984); T. Shimizu, S. Oozora, A. Morimoto, M. Kumeda, N. Ishii, Solar Energy Mats. 8, 311 (1982)Google Scholar
30. Yokoyama, S., Hirose, M., Osaka, Y., Japan J. App. Phys., 20, L35 (1981)Google Scholar
31. Fujita, S., Sasaki, A., J. Electrochem Soc., 132, 398 (1985)CrossRefGoogle Scholar
32. Hirose, M., J. Phys. (Paris), 42, C4705 (1981)Google Scholar
33. Kumeda, M., Yokomichi, H., Shimizu, T., Jpn. J. App. Phys. 23, L502 (1984)Google Scholar
34. Street, R.A., Thompson, M.J., Johnson, N.M., Phil Mag. B 51, 1 (1985)Google Scholar
35. Street, R.A., Thompson, M.J., App. Phys. Let., 45, 769 (1984)Google Scholar
36. Roxlo, C.B., Abeles, B., Tiedje, T., Phys. Rev. Let. 52, 1994 (1984)Google Scholar
37. Ibaraki, N., Fritzsche, H., Phys. Rev. B 30, 5791 (1984)Google Scholar
38. Anderson, R.L., Solid State Electronics, 5, 341 (1962)Google Scholar
39. Katnani, A.D., Margaritondo, G., J. App. Phys., 54, 2522 (1962)Google Scholar
40. Zur, A., McGill, T.C., J. Vac. Sci. Technol., 82, 440 (1984)Google Scholar
41. Harrison, W.A., J. Vac. Sci. Technol., 14, 1016 (1977)Google Scholar
42.The Si30 level lies higher in Si3N4 than in Si because it is repel led upwards by the valence p states on its adjacent N sites, while in Si itself it is repel led equal ly by both valence and conduction states.Google Scholar
43. Powell, M.J., Orton, J.W., App. Phys. Let., 45, 171 (1984)Google Scholar
44. Jackson, W.B., Biegelsen, D.K., Nemanich, R.J., Knights, J.C., App. Phys. Lets. 42, 105 (1983)Google Scholar