Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-19T03:21:00.441Z Has data issue: false hasContentIssue false

Defect Reduction in Remote Plasma Deposited Silicon Nitride by Post-Deposition Rapid Thermal Annealing

Published online by Cambridge University Press:  10 February 2011

G. Lucovsky
Affiliation:
Departments of Physics, Electrical and Computer Engineering, Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695
C. R. Parker
Affiliation:
Departments of Physics, Electrical and Computer Engineering, Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695
Y. Wu
Affiliation:
Departments of Physics, Electrical and Computer Engineering, Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695
J. R. HAUSER
Affiliation:
Departments of Physics, Electrical and Computer Engineering, Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695
Get access

Abstract

This paper describes a novel synthesis route for producing defect-free siliclon nitride films that are demonstrated to provide state of the art electrical performance in MOS devices with stacked oxidenitride gate dielectrics in both nmos and pmos devices. High concentrations of bonded hydrogen are introduced into the as-deposited nitride films during a 300°C remote plasma-enhanced deposition, and then the majority of this hydrogen is evolved during a 30 second rapid thermal anneal (RTA) at 900°C. The nitride formed in this way is effectively “defect-free” and qualitatively different from nitride films formed by conventional chemical vapor deposition processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lee, D.R., Lucovsky, G., Denker, M.R. and Magee, C., J. Vac. Sci. Technol. A 13, 607 (1995); D.R. Lee, C.R. Parker, J.R. Hauser and G. Lucovsky, J. Vac. Sci. Technol. B 13, 1778 (1995).Google Scholar
2. Green, M.L., Brasen, D., Evens-Lutterodt, K.W., Feldman, L.C., Krisch, K., Lennard, W., Tang, H.T., Manchanda, L., and Tang, M.T., Appl. Phys. Lett. 65, 848 (1994).Google Scholar
3. Ahn, J., Kim, J., Lo, G.Q. and Kwong, D.-L., Appl. Phys. Lett. 60, 2089 (1992).Google Scholar
4. Niimi, H. and Lucovsky, G., presented at 1998 International Conference on Characterization and Metrology for USLI Technology, Gaithersburg, MD, March 23–27, 1998..Google Scholar
5. Ma, Y., Yasuda, T., and Lucovsky, G., J. Vac. Sci. Technol. A 11, 952 (1993); Y. Ma, T. Yasuda, S. Habermehl and G. Lucovsky, J. Vac. Sci. Technol. B 11, 1533 (1993). Y. Ma, and G. Lucovsky, J. Vac. Sci. Technol. B 12, 2504 (1994).Google Scholar
6. Hattangady, S.V., Niimi, H., and Lucovsky, G., J. Vac. Sci. Technol. A 14, 3017 (1996).Google Scholar
7. Hattangady, S.V., Niimi, H., and Lucovsky, G., Appl. Phys. Lett. 66, 3495 (1995).Google Scholar
8. Hattangady, S.V., Kraft, R., Grider, D.T., Douglas, M.A., Brown, G.A., Tiner, P.A., Kuehne, J.W., Nicollian, P.E. and Pas, M.F., IEDM Tech. Dig., 495 (1996).Google Scholar
9. Wu, Y. and Lucovsky, G., presented at 1998 International Conference on Characterization and Metrology for USLI Technology, Gaithersburg, MD, March 23–27, 1998.Google Scholar
10. Lucovsky, G., Kim, S.S., Tsu, D.V., Fountain, G.G. and Markunas, R.J., J. Vac. Sci. Technol. B 7, 861 (1989).Google Scholar
11. Lucovsky, G., Kim, S.S., Tsu, D.V., Fountain, G.G. and Markunas, R.J., J. Vac. Sci. Technol. B 7, 861 (1989).Google Scholar
12. Yasuda, T., Ma, Y., Habermehl, S. and Lucovsky, G., Appl. Phys. Lett. 60, 434 (1992).Google Scholar
13. Lucovsky, G., Niimi, H., Koh, K., Lee, D. R. and Jing, Z., in The Physics and Chemistry of SiO2 and the Si-SiO2 Interface, Ed. by Massoud, H.Z., Poindexter, E. H. and Helms, C. R. (Electrochemical Soc., Pennington, 1996), p. 441.Google Scholar
14. Lu, Z., Williams, M.J., Santos-Filho, P.F. and Lucovsky, G., J. Vac. Sci. Technol. A 13, 607 (1995).Google Scholar
15. Lucovsky, G., Santos-Filho, P., Stevens, G., Jing, Z., and Banerjee, A., J. Non-Cryst. Solids 198–200, 19 (1996).Google Scholar
16. Lucovsky, G., Ma, Y., He, S. S., Yasuda, T., Stephens, D. J. and Habermehl, S., Mater. Res. Soc. Symp. Proc. 284, 34 (1993); G. Lucovsky, S.S. He, M.J. Williams and D. Stephens, Microelectronic Eng. 25, 329 (1994) and refs. therein.Google Scholar
17. Parker, C.R., Lucovsky, G. and Hauser, J.R., IEEE Electron Device Letters, 19, 106 (1998).Google Scholar
18. Parker, C.R., Ph.D Thesis, Depart. of Electrical and Computer Engineering, North Carolina State University (1998).Google Scholar
19. Wu, Y., unpublishd.Google Scholar