Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-12T20:05:48.225Z Has data issue: false hasContentIssue false

Defect Reduction by Thermal Cyclic Growth in GaAs Grown on Si by Movpe

Published online by Cambridge University Press:  22 February 2011

W. KÜrner
Affiliation:
Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
R. Dieter
Affiliation:
Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
K. Zieger
Affiliation:
Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
F. Goroncy
Affiliation:
Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
A. DÖrnen
Affiliation:
Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
F. Scholz
Affiliation:
Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
Get access

Abstract

The growth of GaAs epilayers on Si should combine the advantages of both materials. The lattice mismatch and the difference in thermal expansion coefficients, however, result in the yet unsolved problems of high dislocation density and thermal stress in the GaAs layer. Recently, considerable improvements have been achieved by a ‘thermal cyclic growth’ (TCG) process. In this study we focus on the reduction of high defect concentration and dislocation density. The improvement of the epilayer quality is verified by DLTS, PL and DCXD. Results of TEM and DLTS measurements lead to the identification of a dislocation related defect.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Heteroepitaxy on Silicon (Mater. Res. Soc. Symp. Proc. Pittsburgh, PA, Vol. 67 (1986), Vol. 91 (1987), and Vol. 116 (1988))Google Scholar
[2] Bringans, R.D., Biegelsen, D.K., Swartz, L.-E., Ponce, F.A., Tramonta, J.C. Appl. Phys. Lett. 61(2), 195 (1992)Google Scholar
[3] References in Demeester, P., Ackaert, A., Coudenys, G., Moerman, I., Buydens, L., Pollentier, I., Daele, P. Van, Prog. Crystal Growth and Charact. 22, 53 (1991)CrossRefGoogle Scholar
[4] Lee, J.W., Shichijo, H., Tsai, H., Matyi, R.J., Appl. Phys. Lett. 50(1), 31 (1987)Google Scholar
[5] Ayers, J.E., Schowalter, L.J., Gandhi, S.K., J. Cryst. Growth 125, 329 (1990)Google Scholar
[6] Dieter, R.J., Goroncy, F., Lay, J.P., Draidia, N., Zieger, K., Kirner, W., Lu, B., Scholz, F., Roos, B., Braun, M., Frese, V., Hilgarth, J., Proc. I thEC PVSEC, Montreux, Switzerland 1992, p.225 Google Scholar
[7] Lang, D.V., J. Appl. Phys. 45(7), 3023 (1974)Google Scholar
[8] Akijama, M., Kawarada, Y., Kaminishi, K., J. Cryst. Growth 68, 21 (1984)Google Scholar
[9] Soga, T., Sakai, S., Umeno, M., Hattori, S., Jap. J. Appl. Phys. 25, 1510 (1986)Google Scholar
[10] Stolz, W., Guimaraes, F.E.G., Ploog, K., J. Appl. Phys. 63(2), 492 (1988)Google Scholar
[11] Vincent, G., Bois, D., Solid State Communication 27, 431 (1978)CrossRefGoogle Scholar
[12] Lagowski, J., Lin, D.G., Aoyama, T., Gatos, H.C., Appl. Phys. Lett. 44, 336 (1984)Google Scholar
[13] Taniguchi, M., Ikoma, T., J. Appl. Phys. 54(11), 6448 (1983)Google Scholar
[14] Xin, S.H., Schaff, W.J., Wood, C., Eastman, L.F., Appl. Phys. Lett. 41, 742 (1982)Google Scholar
[15] Kurner, W., unpublishedGoogle Scholar