Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-11T14:01:31.188Z Has data issue: false hasContentIssue false

Defect Microchemistry at the SiO2/Si Interface

Published online by Cambridge University Press:  22 February 2011

Gary W. Rubloff*
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, P. O. Box 218, Yorktown Heights, New York 10598
Get access

Abstract

A dominant, intrinsic chemical reaction path in SiO2/Si systems is the decomposition reaction Si +SiO2 → 2 SiO. Controlled analytical studies have elucidated the microchemical and microstructural aspects of this process and revealed that nucleation of the reaction occurs at existing defect sites. At an earlier stage of reaction, the same decomposition chemistry leads to electricl activation of the defects, as seen in breakdown and hole trapping phenomena. By careful and systematic control of ambient conditions during annealing, it is shown that the evolution of electrically active defects follows the same decomposition chemistry as does the physical deterioration of an entire oxide layer. These aspects of defect chemical behavior suggest implications for both defect identification and defect control in thin SiO2 layers on Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Geradi, G. J., Poindexter, E. H., Caplan, P. J., and Johnson, N. M., Appl. Phys. Letters 49, 348 (1986); P. J. Caplan, E. H. Poindexter, B. E. Deal, and R. R. Razouk, J. Appl. Phys. 50, 5847 (1979).CrossRefGoogle Scholar
2. Hollinger, G. and Himpsel, F. J., Appl. Phys. Letters 44, 93 (1984); M. Sobolewski and C. R. Helms, J. Vac. Sci. Technol. A 3, 1300 (1985); F. J. Grunthaner, B. F. Lewis, J. Maserjian, and A..Madhukar, J. Vac. Sci. Technol. 20, 747 (1982).CrossRefGoogle Scholar
3. Tromp, R., Rubloff, G. W., Balk, P., LeGoues, F. K., and Loenen, E.J. van, Phys. Rev. Letters 55, 2332 (1985).CrossRefGoogle Scholar
4. Liehr, M., Lewis, J. E., and Rubloff, G. W., J. Vac. Sci. Technol. A5, 1559 (1987).CrossRefGoogle Scholar
5. Hofmann, K., Rubloff, G. W., and McCorkle, R.A., Appl. Phys. Letters 49, 1525 (1986).CrossRefGoogle Scholar
6. Hofmann, K., Rubloff, G. W., and Young, D. R., J. Appl. Phys. 61, 4584 (1987).CrossRefGoogle Scholar
7. Hofmann, K., Young, D. R., and Rubloff, G. W., J. Appl. Phys. 62, 925 (1987).CrossRefGoogle Scholar
8. Rubloff, G. W., Hofmann, K., Liehr, M., and Young, D. R., Phys. Rev. Letters 58, 2379 (1987).CrossRefGoogle Scholar
9. Aslam, M., Balk, P., and Young, D. R., Solid State Electronics 27, 709 (1984).Google Scholar
10. Kobayashi, M., Ogawa, T., and Wada, K., Abstract No. 66 of The Electrochemical Society Spring Meeting, Toronto, 1985 (unpublished), p. 94.Google Scholar
11. Hofmann, K., Rubloff, G. W., Liehr, M., and Young, D. R., Appl. Surface Science 30, 25 (1987).CrossRefGoogle Scholar