Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-17T16:45:37.410Z Has data issue: false hasContentIssue false

Defect Luminescence in Films Containing Ge and GeO2 Nanocrystals

Published online by Cambridge University Press:  15 February 2011

M. Zacharias
Affiliation:
Institute of Experimental Physics, Otto-v.-Guericke University, 39016 Magdeburg, Germany Department of Electrical Engineering, University of Rochester, Rochester, NY 14627, USA
S. J. Atherton
Affiliation:
Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
P. M. Fauchet
Affiliation:
Department of Electrical Engineering, University of Rochester, Rochester, NY 14627, USA
Get access

Abstract

Amorphous SiOx alloys containing Ge or GeO2 nanocrystals are produced by dc-magnetron sputtering and controlled crystallization. The samples are investigated by Raman scattering, transmission electron microscopy, photo luminescence and excitation spectroscopy. Under UV excitation, both types of films luminesce around 3.1 eV, with identical PL line shapes and subnanosecond PL dynamics. The strongest PL intensity is found for the films containing GeO2 crystals and for the largest nanocrystals. These results are a clear indication that although the blue luminescence is without a doubt correlated with the formation of Ge (or GeO2) nanocrystals, it is not produced by the radiative recombination of excitons confined in the nanocrystals. Possible mechanisms for the luminescence are discussed, including defects at the nanocrystal/matrix interface or in the matrix itself.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Cullis, A.G., Canham, L.T., Nature 353 (1991) 335.Google Scholar
(2) Lehman, V., Gösele, U., Appl. Phys. Lett. 58 (1991) 856.Google Scholar
(3) Hirschman, K., Tsybeskov, L., Duttagupta, S., Fauchet, P.M., Nature 384 (1997) 338.Google Scholar
(4) Maeda, Y., Phys. Rev. B51 (1995) 1658.Google Scholar
(5) Yang, C.M., Shcheglov, K.V., Brongersma, M.L., Polman, A., Atwater, H.A., Mat. Res. Soc. Symp. Proc. 358 (1995) 181.Google Scholar
(6) Zacharias, M., Weigand, R., Dietrich, B., Stolze, F., Biäsing, J., Drüsedau, T., Christen, J., J. Appl. Phys. 81(1997)2384.Google Scholar
(7) Paine, D.C., Caragianis, C., Shigesato, Y., Appl. Phys. Lett. 60 (1992) 2286.Google Scholar
(8) Paine, D.C., Caragianis, C., Kim, T.Y., Shigesato, Y., Appl. Phys. Lett. 62 (1993) 2842.Google Scholar
(9) Zacharias, M., Fauchet, P. M., Appl. Phys. Lett., submitted.Google Scholar
(10) Fauchet, P.M., Campbell, I.H., Critical Reviews in Solid State and Material Sciences, 14/1 (1988) S79.Google Scholar
(11) Maeda, Y., Tsukamoto, N., Yazawa, Y., Kanemitsu, Y., Masumoto, Y., Appl. Phys. Lett. 59 (1991)3168.Google Scholar
(12) Kanemitsu, Y., Uto, H., Masumoto, Y., Maeda, Y., Appl. Phys. Lett. 61 (1992) 2187.Google Scholar
(13) Skuja, L., J. of Non-Cryst. Solids 167 (1994) 229.Google Scholar
(14) Philipp, H.R., J. Phys. Chem. Solids 32 (1971) 1971.Google Scholar
(15) Zacharias, M., Dimova-Malinovska, D., Stutzmann, M., Phil. Mag. 73 (1996) 799.Google Scholar
(16) Tsybeskov, L., Vandyshev, J.V., and Fauchet, P.M., Phys. Rev. B49 (1994) 7821.Google Scholar
(17) Stutzmann, M., Phys. Stat. Sol. (b) 192 (1995) 273.Google Scholar
(18) Ginzburg, L.P., Gordeev, A.A., Gorchakov, A.P., Jilinsky, A.P., J. Non-Cryst. Solids 183(1995)234.Google Scholar