Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-07-04T01:41:20.899Z Has data issue: false hasContentIssue false

Defect Characterization in ZnGeP2 by Time -Resolved Photoluminescence

Published online by Cambridge University Press:  10 February 2011

N. Dietz
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695 Department of Materials Science & Engineering, North Carolina State University, Raleigh, NC 27695
W. Busse
Affiliation:
Technical University Berlin, and North Carolina State University, Raleigh, NC 27695
H. E. Gumlich
Affiliation:
Technical University Berlin, and North Carolina State University, Raleigh, NC 27695
W. Ruderman
Affiliation:
Inrad, Inc., Northvale, NJ 07647
I. Tsveybak
Affiliation:
Inrad, Inc., Northvale, NJ 07647
G. Wood
Affiliation:
Department of Materials Science & Engineering, North Carolina State University, Raleigh, NC 27695
K. J. Bachmann
Affiliation:
Department of Materials Science & Engineering, North Carolina State University, Raleigh, NC 27695 Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695
Get access

Abstract

Steady state and time-resolved photoluminescence (PL) investigations on ZnGeP2 crystals grown from the vapor phase by high pressure physical vapor transport (HPVT) and from the melt by gradient freezing (GF) are reported. The luminescence spectra reveal a broad infrared emission with peak position at 1.2 eV that exhibits features of classical donor-acceptor recombination. The hyperbolic decay characteristic over a wide energy range, investigated from 1.2 eV up to 1.5eV, suggest that this broad emission band is related to one energetic recombination center. Higher energetic luminescence structures at 1.6eV and 1.7eV were revealed after annealing of ZnGeP2 crystals in vacuum for a longer period of time. The emission decay behavior in this energy range is characterized by two hyperbolic time constants, viewed as the supercomposition of the decay from the broad emission center peaked at 1.2eV and additional donor-acceptor recombination emissions at 1.6eV and 1.7eV, respectively. ZnGeP2 crystals grown under Ge-deficient conditions by HPVT show an additional emission structure at 1.8 eV with sharp emission fine structures at 1.778 eV related to the presence of additional donor states.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shay, J. L. and Wernick, J. H., Academic Press, New York (1976).Google Scholar
2. Boyd, G. D., Kasper, H. M., McFee, J. H. and Storz, F. G., IEEE J. Quantum. Electron. QE 8, 900 (1972).Google Scholar
3. Andreev, Y. M., Voevodin, V. G., Gribenyukov, A. I. and Novikov, V. P., Sov. J. Quantum. Electron. 17, 748 (1987).Google Scholar
4. Bachmann, K. J., Mat. Res. Soc. Symp. Proc. 242, 707 (1992).Google Scholar
5. Dietz, N., Tsveybak, I., Ruderman, W., Wood, G. and Bachmann, K.J., Appl. Phys. Lett. 65 (22), 2759 (1994).Google Scholar
6. Averkieva, G. K., Grigoreva, V. S., Maltseva, I. A., Prochukhan, V. D. and Rud, Y. V., phys. stat sol. (a) 39, 453 (1977).Google Scholar
7. Hobgood, H. M., Henningsen, T., Thomas, R. N., Hopkins, R. H., Ohmer, M. C., Mitchel, W. C., Fischer, D. W., Hegde, S. M. and Hopkins, F. K., J. Appl. Phys. 73(8), 4030 (1993).Google Scholar
8. Rud, Yu. V., Semiconductors 28(7), 633 (1994).Google Scholar
9. Rakowsky, M.H., Kuhn, W.K., Lauderdale, W.J., Halliburton, L.E., Edwards, G.J., Scripsick, M.P., Schunemann, P.G., Poliak, T.M., Ohmer, M.C., and Hopkins, F.K., Appl. Phys. Lett. 64(13), 1615 (1994).Google Scholar
10. Kiel, A., Solid State Communications 15, 1021 (1974).Google Scholar
11. Giles, N.C., Halliburton, L.E., Schunemann, P.G. and Poliak, T.M., Appl. Phys. Lett. 66, 1758 (1995).Google Scholar
12. Hopfield, J. J., Thomas, D. G. and Gershenzon, M., Phys. Rev. Lett. 10, 162 (1963).Google Scholar
13. Wood, G., Master Thesis, North Carolina State University, Raleigh NC 27695 (1994).Google Scholar
14. Rud, Y. V. and Masagutova, R. V., Sov. Tech. Phys. Lett. 7, 72 (1981).Google Scholar
15. Halliburton, L. E., Edwards, G. J., Scripsick, M. P., Rankowsky, M. H., Schunemann, P. G. and Poliak, T. M., Appl. Phys. Lett. 66, 2670 (1995).Google Scholar