Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-27T23:05:23.375Z Has data issue: false hasContentIssue false

Defect Centers Formed During Wet Oxidation of Si-Ge/Si Heterostructures

Published online by Cambridge University Press:  22 February 2011

M. E. Zvanut
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375
W. E. Carlos
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375
S. M. Prokes
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375
R. E. Stahlbush
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375
Get access

Abstract

Germanium incorporated oxide films formed by wet oxidation of SiGe substrates have been studied using Electron Paramagnetic Resonance. SiGe layers 400 nm thick were prepared by molecular beam epitaxy and oxidized in a steam ambient at 900° C. After a 10 Mrad x-ray irradiation, an oxide defect with a zero crossing at g=1.995 is observed. Comparison of the spectrum with that obtained from Ge-doped silica suggests that the defect observed in the thin film is an oxygen vacancy related defect, a Ge E' center.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wang, P. J., Meyerson, B. S., Fang, F. F., Nocera, J., and Parker, B., Appl. Phys. Lett. 55., 2333 (1989).Google Scholar
2. People, R., IEEE J. Quantum Electron. QE-22, 1696 (1986).Google Scholar
3. Prokeš, S. M. and Rai, A. K., Mat. Res. Soc. Proc, Dec. 1990, to be published.Google Scholar
4. LeGoues, F. K., Rosenberg, R., Nguyen, T., Himpsel, F., and Meyerson, B. S., J. Appl. Phys. 65, 1724 (1989).Google Scholar
5. Patton, G. L., Iyer, S. S., Delage, S. L., Ganin, E., and Mclntosh, R. C., Mat. Res. Soc. Symp. Proc. 102, 295 (1988).Google Scholar
6. Fathy, D. and Sayah, M., Mat. Lett. 9, 460 (1990).Google Scholar
7. Tsai, Tsung-Ein, Griscom, D. L., and Friebele, E. J., Diffusion and Defect Data 53–54, 469 (1987).CrossRefGoogle Scholar
8. Watanabe, Y., Kawazoe, H., Shibuya, K., and Muta, K., Jap. J. Appl. Phys. 25, 425 (1986).Google Scholar
9. Prokeš, S. M., Rai, A. K., and Carlos, W.E., Mat. Res. Soc. Symp. Proc. 160, 341 (1989).Google Scholar
10. Prokes, S. M. and Glembocki, O. J., J. Electron. Mater., in press.Google Scholar
11. Tsai, Tsung-Ein, Griscom, D. L., Friebele, E. J., and Fleming, J. W., J. Appl. Phys. 62, 2264 (1987).Google Scholar
12. Friebele, E. J. and Griscom, D. L., Mat. Res. Soc. Symp. Proc. 61, 319 (1986).Google Scholar
13. Lenahan, P. M. and Dressendorfer, P. V., J. Appl. Phys. 55, 3495 (1984).Google Scholar
14. Griscom, D. L., Nucl. Instrum. Methods in Phys. Res. B1, 481 (1984).Google Scholar
15. Ma, T. P., in Ionizing Radiation Effects in MOS Devices and Circuits, edited by Ma, T.P. and Dressendorfer, Paul V. (John Wiley & Sons Inc., New York, 1989), p. 401.Google Scholar